Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Nanotechnol ; 18(3): 227-232, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36690739

RESUMO

Topological magnetic monopoles (TMMs), also known as hedgehogs or Bloch points, are three-dimensional (3D) non-local spin textures that are robust to thermal and quantum fluctuations due to the topology protection1-4. Although TMMs have been observed in skyrmion lattices1,5, spinor Bose-Einstein condensates6,7, chiral magnets8, vortex rings2,9 and vortex cores10, it has been difficult to directly measure the 3D magnetization vector field of TMMs and probe their interactions at the nanoscale. Here we report the creation of 138 stable TMMs at the specific sites of a ferromagnetic meta-lattice at room temperature. We further develop soft X-ray vector ptycho-tomography to determine the magnetization vector and emergent magnetic field of the TMMs with a 3D spatial resolution of 10 nm. This spatial resolution is comparable to the magnetic exchange length of transition metals11, enabling us to probe monopole-monopole interactions. We find that the TMM and anti-TMM pairs are separated by 18.3 ± 1.6 nm, while the TMM and TMM, and anti-TMM and anti-TMM pairs are stabilized at comparatively longer distances of 36.1 ± 2.4 nm and 43.1 ± 2.0 nm, respectively. We also observe virtual TMMs created by magnetic voids in the meta-lattice. This work demonstrates that ferromagnetic meta-lattices could be used as a platform to create and investigate the interactions and dynamics of TMMs. Furthermore, we expect that soft X-ray vector ptycho-tomography can be broadly applied to quantitatively image 3D vector fields in magnetic and anisotropic materials at the nanoscale.

2.
J Am Chem Soc ; 144(48): 22026-22034, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36417898

RESUMO

Nanothreads are emerging one-dimensional sp3-hybridized materials with high predicted tensile strength and a tunable band gap. They can be synthesized by compressing aromatic or nonaromatic small molecules to pressures ranging from 15-30 GPa. Recently, new avenues are being sought that reduce the pressure required to afford nanothreads; the focus has been placed on the polymerization of molecules with reduced aromaticity, favorable stacking, and/or the use of higher reaction temperatures. Herein, we report the photochemically mediated polymerization of pyridine and furan aromatic precursors, which achieves nanothread formation at reduced pressures. In the case of pyridine, it was found that a combination of slow compression/decompression with broadband UV light exposure yielded a crystalline product featuring a six-fold diffraction pattern with similar interplanar spacings to previously synthesized pyridine-derived nanothreads at a reduced pressure. When furan is compressed to 8 GPa and exposed to broadband UV light, a crystalline solid is recovered that similarly demonstrates X-ray diffraction with an interplanar spacing akin to that of the high-pressure synthesized furan-derived nanothreads. Our method realizes a 1.9-fold reduction in the maximum pressure required to afford furan-derived nanothreads and a 1.4-fold reduction in pressure required for pyridine-derived nanothreads. Density functional theory and multiconfigurational wavefunction-based computations were used to understand the photochemical activation of furan and subsequent cascade thermal cycloadditions. The reduction of the onset pressure is caused by an initial [4+4] cycloaddition followed by increasingly facile thermal [4+2]-cycloadditions during polymerization.


Assuntos
Nanotecnologia , Polimerização
3.
ACS Appl Mater Interfaces ; 14(36): 41316-41327, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36054507

RESUMO

Semiconductor metalattices consisting of a linked network of three-dimensional nanostructures with periodicities on a length scale <100 nm can enable tailored functional properties due to their complex nanostructuring. For example, by controlling both the porosity and pore size, thermal transport in these phononic metalattices can be tuned, making them promising candidates for efficient thermoelectrics or thermal rectifiers. Thus, the ability to characterize the porosity, and other physical properties, of metalattices is critical but challenging, due to their nanoscale structure and thickness. To date, only metalattices with high porosities, close to the close-packing fraction of hard spheres, have been studied experimentally. Here, we characterize the porosity, thickness, and elastic properties of a low-porosity, empty-pore silicon metalattice film (∼500 nm thickness) with periodic spherical pores (∼tens of nanometers), for the first time. We use laser-driven nanoscale surface acoustic waves probed by extreme ultraviolet scatterometry to nondestructively measure the acoustic dispersion in these thin silicon metalattice layers. By comparing the data to finite element models of the metalattice sample, we can extract Young's modulus and porosity. Moreover, by controlling the acoustic wave penetration depth, we can also determine the metalattice layer thickness and verify the substrate properties. Additionally, we utilize electron tomography images of the metalattice to verify the geometry and validate the porosity extracted from scatterometry. These advanced characterization techniques are critical for informed and iterative fabrication of energy-efficient devices based on nanostructured metamaterials.

4.
J Am Chem Soc ; 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34130458

RESUMO

The molecular structure of nanothreads produced by the slow compression of 13C4-furan was studied by advanced solid-state NMR. Spectral editing showed that >95% of carbon atoms were bonded to one hydrogen (C-H) and that there were 2-4% CH2, 0.6% C═O, and <0.3% CH3 groups. Alkenes accounted for 18% of the CH moieties, while trapped, unreacted furan made up 7%. Two-dimensional (2D) 13C-13C and 1H-13C NMR identified 12% of all carbon in asymmetric O-CH═CH-CH-CH- and 24% in symmetric O-CH-CH═CH-CH- rings. While the former represented defects or chain ends, some of the latter appeared to form repeating thread segments. Around 10% of carbon atoms were found in highly ordered, fully saturated nanothread segments. Unusually slow 13C spin-exchange with sites outside the perfect thread segments documented a length of at least 14 bonds; the small width of the perfect-thread signals also implied a fairly long, regular structure. Carbons in the perfect threads underwent relatively slow spin-lattice relaxation, indicating slow spin exchange with other threads and smaller amplitude motions. Through partial inversion recovery, the signals of the perfect threads were observed and analyzed selectively. Previously considered syn-threads with four different C-H bond orientations were ruled out by centerband-only detection of exchange NMR, which was, on the contrary, consistent with anti-threads. The observed 13C chemical shifts were matched well by quantum-chemical calculations for anti-threads but not for more complex structures like syn/anti-threads. These observations represent the first direct determination of the atomic-level structure of fully saturated nanothreads.

5.
ACS Nano ; 15(3): 4134-4143, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33470790

RESUMO

Carbon nanothreads, which are one-dimensional sp3-rich polymers, combine high tensile strength with flexibility owing to subnanometer widths and diamond-like cores. These extended carbon solids are constructed through pressure-induced polymerization of sp2 molecules such as benzene. Whereas a few examples of carbon nanothreads have been reported, the need for high onset pressures (≥17 GPa) to synthesize them precludes scalability and limits scope. Herein, we report the scalable synthesis of carbon nanothreads based on molecular furan, which can be achieved through ambient temperature pressure-induced polymerization with an onset reaction pressure of only 10 GPa due to its lessened aromaticity relative to other molecular precursors. When slowly compressed to 15 GPa and gradually decompressed to 1.5 GPa, a sharp 6-fold diffraction pattern is observed in situ, indicating a well-ordered crystalline material formed from liquid furan. Single-crystal X-ray diffraction (XRD) of the reaction product exhibits three distinct d-spacings from 4.75 to 4.9 Å, whose size, angular spacing, and degree of anisotropy are consistent with our atomistic simulations for crystals of furan nanothreads. Further evidence for polymerization was obtained by powder XRD, Raman/IR spectroscopy, and mass spectrometry. Comparison of the IR spectra with computed vibrational modes provides provisional identification of spectral features characteristic of specific nanothread structures, namely syn, anti, and syn/anti configurations. Mass spectrometry suggests that molecular weights of at least 6 kDa are possible. Furan therefore presents a strategic entry toward scalable carbon nanothreads.

6.
Opt Express ; 28(20): 30263-30274, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-33114909

RESUMO

Today fiber lasers in the visible to near-infrared region of the spectrum are well known, however mid-infrared fiber lasers have only recently approached the same commercial availability and power output. There has been a push to fabricate optical fiber lasers out of crystalline materials which have superior mid-IR performance and the ability to directly generate mid-IR light. However, these materials cannot currently be fabricated into an optical fiber via traditional means. We have used high pressure chemical vapor deposition (HPCVD) to deposit Fe2+:ZnSe into a silica optical fiber template. These deposited structures have been found to exhibit laser threshold behavior and emit CW mid-IR laser light with a central wavelength of 4.12 µm. This is the first reported solid state fiber laser with direct laser emission generated beyond 4 µm and represents a new frontier of possibility in mid-IR laser development.

7.
ACS Nano ; 14(10): 12810-12818, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-32941002

RESUMO

Metalattices are crystalline arrays of uniform particles in which the period of the crystal is close to some characteristic physical length scale of the material. Here, we explore the synthesis and properties of a germanium metalattice in which the ∼70 nm periodicity of a silica colloidal crystal template is close to the ∼24 nm Bohr exciton radius of the nanocrystalline Ge replica. The problem of Ge surface oxidation can be significant when exploring quantum confinement effects or designing electronically coupled nanostructures because of the high surface area to volume ratio at the nanoscale. To eliminate surface oxidation, we developed a core-shell synthesis in which the Ge metalattice is protected by an oxide-free Si interfacial layer, and we explore its properties by transmission electron microscopy (TEM), Raman spectroscopy, and electron energy loss spectroscopy (EELS). The interstices of a colloidal crystal film grown from 69 nm diameter spherical silica particles were filled with polycrystalline Ge by high-pressure confined chemical vapor deposition (HPcCVD) from GeH4. After the SiO2 template was etched away with aqueous HF, the Ge replica was uniformly coated with an amorphous Si shell by HPcCVD as confirmed by TEM-EDS (energy-dispersive X-ray spectroscopy) and Raman spectroscopy. Formation of the shell prevents oxidation of the Ge core within the detection limit of XPS. The electronic properties of the core-shell structure were studied by accessing the Ge 3d edge onset using STEM-EELS. A blue shift in the edge onset with decreasing size of Ge sites in the metalattices suggests quantum confinement of the Ge core. The degree of quantum confinement of the Ge core depends on the void sizes in the template, which is tunable by using silica particles of varying size. The edge onset also shows a shift to higher energy near the shell in comparison with the Ge core. This shift along with the observation of Ge-Si vibrational modes in the Raman spectrum indicate interdiffusion of Ge and Si. Both the size of the voids in the template and core-shell interdiffusion of Si and Ge can in principle be tuned to modify the electronic properties of the Ge metalattice.

8.
Nano Lett ; 20(5): 3306-3312, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32227973

RESUMO

Metalattices are artificial 3D solids, periodic on sub-100 nm length scales, that enable the functional properties of materials to be tuned. However, because of their complex structure, predicting and characterizing their properties is challenging. Here we demonstrate the first nondestructive measurements of the mechanical and structural properties of metalattices with feature sizes down to 14 nm. By monitoring the time-dependent diffraction of short wavelength light from laser-excited acoustic waves in the metalattices, we extract their acoustic dispersion, Young's modulus, filling fraction, and thicknesses. Our measurements are in excellent agreement with macroscopic predictions and potentially destructive techniques such as nanoindentation and scanning electron microscopy, with increased accuracy over larger areas. This is interesting because the transport properties of these metalattices do not obey bulk predictions. Finally, this approach is the only way to validate the filling fraction of metalattices over macroscopic areas. These combined capabilities can enable accurate synthesis of nanoenhanced materials.

9.
ACS Nano ; 14(4): 4235-4243, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32223186

RESUMO

Controlling the thermal conductivity of semiconductors is of practical interest in optimizing the performance of thermoelectric and phononic devices. The insertion of inclusions of nanometer size in a semiconductor is an effective means of achieving such control; it has been proposed that the thermal conductivity of silicon could be reduced to 1 W/m/K using this approach and that a minimum in the heat conductivity would be reached for some optimal size of the inclusions. Yet the experimental verification of this design rule has been limited. In this work, we address this question by studying the thermal properties of silicon metalattices that consist of a periodic distribution of spherical inclusions with radii from 7 to 30 nm, embedded into silicon. Experimental measurements confirm that the thermal conductivity of silicon metalattices is as low as 1 W/m/K for silica inclusions and that this value can be further reduced to 0.16 W/m/K for silicon metalattices with empty pores. A detailed model of ballistic phonon transport suggests that this thermal conductivity is close to the lowest achievable by tuning the radius and spacing of the periodic inhomogeneities. This study is a significant step in elucidating the scaling laws that dictate ballistic heat transport at the nanoscale in silicon and other semiconductors.

10.
J Am Chem Soc ; 142(42): 17944-17955, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31961671

RESUMO

Relative to the rich library of small-molecule organics, few examples of ordered extended (i.e., nonmolecular) hydrocarbon networks are known. In particular, sp3 bonded, diamond-like materials represent appealing targets because of their desirable mechanical, thermal, and optical properties. While many covalent organic frameworks (COFs)-extended, covalently bonded, and porous structures-have been realized through molecular architecture with exceptional control, the design and synthesis of dense, covalent extended solids has been a longstanding challenge. Here we report the preparation of a sp3-bonded, low-dimensional hydrocarbon synthesized via high-pressure, solid-state diradical polymerization of cubane (C8H8), which is a saturated, but immensely strained, cage-like molecule. Experimental measurements show that the obtained product is crystalline with three-dimensional order that appears to largely preserve the basic structural topology of the cubane molecular precursor and exhibits high hardness (comparable to fused quartz) and thermal stability up to 300 °C. Among the plausible theoretical candidate structures, one-dimensional carbon scaffolds comprising six- and four-membered rings that pack within a pseudosquare lattice provide the best agreement with experimental data. These diamond-like molecular rods with extraordinarily small thickness are among the smallest members in the carbon nanothread family, and calculations indicate one of the stiffest one-dimensional systems known. These results present opportunities for the synthesis of purely sp3-bonded extended solids formed through the strain release of saturated molecules, as opposed to only unsaturated precursors.

11.
Chem Sci ; 11(42): 11419-11424, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34094384

RESUMO

Limited supramolecular strategies have been utilized to synthesize sequence-defined polymers, despite the prominence of noncovalent interactions in materials design. Herein, we illustrate the utility of 'sacrificial' aryl-perfluoroaryl supramolecular synthons to synthesize sp3-hybridized nanothreads from sp2-enriched reactants. Our strategy features A-B reactant pairs in the form of a phenol:pentafluorophenol co-crystal that is preorganized for an electronically-biased and sequence-defined polymerization. The polymerization, initiated at 12 GPa, affords an alternating copolymer featuring exogenous -OH functionalities. The external substitution is confirmed through IR spectroscopy. Importantly, the inclusion of the functional unit provides the first experimental glimpse at reaction mechanism: keto-enol tautomerization that can only occur during cycloaddition is observed through IR spectroscopy. Our approach realizes the first example of a functionalized nanothread and attains sequence definition through sacrificial supramolecular preorganization and presents a further approach for de novo design of complex nanothreads.

12.
J Phys Chem Lett ; 10(22): 7164-7171, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31601100

RESUMO

Nanothreads are one-dimensional sp3 hydrocarbons that pack within pseudohexagonal crystalline lattices. They are believed to lack long-range order along the thread axis and also lack interthread registry. Here we investigate the phase behavior of thiophene up to 35 GPa and establish a pressure-induced phase transition sequence that mirrors previous observations in low-temperature studies. Slow compression to 35 GPa results in the formation of a recoverable saturated product with a 2D monoclinic diffraction pattern along (0001) that agrees closely with atomistic simulations for single crystals of thiophene-derived nanothreads. Paradoxically, this lower-symmetry packing signals a higher degree of structural order since it must arise from constituents with a consistent azimuthal orientation about their shared axis. The simplicity of thiophene reaction pathways (with only four carbon atoms per ring) apparently yields the first nanothreads with orientational order, a striking outcome considering that a single point defect in a 1D system can disrupt long-range structural order.

13.
J Am Chem Soc ; 141(17): 6937-6945, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30951295

RESUMO

Carbon nanothreads are a new one-dimensional sp3-bonded nanomaterial of CH stoichiometry synthesized from benzene at high pressure and room temperature by slow solid-state polymerization. The resulting threads assume crystalline packing hundreds of micrometers across. We show high-resolution electron microscopy (HREM) images of hexagonal arrays of well-aligned thread columns that traverse the 80-100 nm thickness of the prepared sample. Diffuse scattering in electron diffraction reveals that nanothreads are packed with axial and/or azimuthal disregistry between them. Layer lines in diffraction from annealed nanothreads provide the first evidence of translational order along their length, indicating that this solid-state reaction proceeds with some regularity. HREM also reveals bends and defects in nanothread crystals that can contribute to the broadening of their diffraction spots, and electron energy-loss spectroscopy confirms them to be primarily sp3-hybridized, with less than 27% sp2 carbon, most likely associated with partially saturated "degree-4" threads.

14.
Nano Lett ; 18(8): 4934-4942, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-29954179

RESUMO

A one-dimensional (1D) sp3 carbon nanomaterial with high lateral packing order, known as carbon nanothreads, has recently been synthesized by slowly compressing and decompressing crystalline solid benzene at high pressure. The atomic structure of an individual nanothread has not yet been determined experimentally. We have calculated the 13C nuclear magnetic resonance (NMR) chemical shifts, chemical shielding tensors, and anisotropies of several axially ordered and disordered partially saturated and fully saturated nanothreads within density functional theory and systematically compared the results with experimental solid-state NMR data to assist in identifying the structures of the synthesized nanothreads. In the fully saturated threads, every carbon atom in each progenitor benzene molecule has bonded to a neighboring molecule (i.e., 6 bonds per molecule, a so-called "degree-6" nanothread), while the partially saturated threads examined retain a single double bond per benzene ring ("degree-4"). The most-parsimonious theoretical fit to the experimental 1D solid-state NMR spectrum, constrained by the measured chemical shift anisotropies and key features of two-dimensional NMR spectra, suggests a certain combination of degree-4 and degree-6 nanothreads as plausible components of this 1D sp3 carbon nanomaterial, with intriguing hints of a [4 + 2] cycloaddition pathway toward nanothread formation from benzene columns in the progenitor molecular crystal, based on the presence of nanothreads IV-7, IV-8, and square polymer in the minimal fit.

15.
J Am Chem Soc ; 140(24): 7658-7666, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29808673

RESUMO

Carbon nanothreads are a new type of one-dimensional sp3-carbon nanomaterial formed by slow compression and decompression of benzene. We report characterization of the chemical structure of 13C-enriched nanothreads by advanced quantitative, selective, and two-dimensional solid-state nuclear magnetic resonance (NMR) experiments complemented by infrared (IR) spectroscopy. The width of the NMR spectral peaks suggests that the nanothread reaction products are much more organized than amorphous carbon. In addition, there is no evidence from NMR of a second phase such as amorphous mixed sp2/sp3-carbon. Spectral editing reveals that almost all carbon atoms are bonded to one hydrogen atom, unlike in amorphous carbon but as is expected for enumerated nanothread structures. Characterization of the local bonding structure confirms the presence of pure fully saturated "degree-6" carbon nanothreads previously deduced on the basis of crystal packing considerations from diffraction and transmission electron microscopy. These fully saturated threads comprise between 20% and 45% of the sample. Furthermore, 13C-13C spin exchange experiments indicate that the length of the fully saturated regions of the threads exceeds 2.5 nm. Two-dimensional 13C-13C NMR spectra showing bonding between chemically nonequivalent sites rule out enumerated single-site thread structures such as polytwistane or tube (3,0) but are consistent with multisite degree-6 nanothreads. Approximately a third of the carbon is in "degree-4" nanothreads with isolated double bonds. The presence of doubly unsaturated degree-2 benzene polymers can be ruled out on the basis of 13C-13C NMR with spin exchange rate constants tuned by rotational resonance and 1H decoupling. A small fraction of the sample consists of aromatic rings within the threads that link sections with mostly saturated bonding. NMR provides the detailed bonding information necessary to refine solid-state organic synthesis techniques to produce pure degree-6 or degree-4 carbon nanothreads.

16.
Opt Express ; 26(9): 11393-11406, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-29716059

RESUMO

Colloidal crystals with specific electronic, optical, magnetic, vibrational properties, can be rationally designed by controlling fundamental parameters such as chemical composition, scale, periodicity and lattice symmetry. In particular, silica nanospheres -which assemble to form colloidal crystals- are ideal for this purpose, because of the ability to infiltrate their templates with semiconductors or metals. However characterization of these crystals is often limited to techniques such as grazing incidence small-angle scattering that provide only global structural information and also often require synchrotron sources. Here we demonstrate small-angle Bragg scattering from nanostructured materials using a tabletop-scale setup based on high-harmonic generation, to reveal important information about the local order of nanosphere grains, separated by grain boundaries and discontinuities. We also apply full-field quantitative ptychographic imaging to visualize the extended structure of a silica close-packed nanosphere multilayer, with thickness information encoded in the phase. These combined techniques allow us to simultaneously characterize the silica nanospheres size, their symmetry and distribution within single colloidal crystal grains, the local arrangement of nearest-neighbor grains, as well as to quantitatively determine the number of layers within the sample. Key to this advance is the good match between the high harmonic wavelength used (13.5nm) and the high transmission, high scattering efficiency, and low sample damage of the silica colloidal crystal at this wavelength. As a result, the relevant distances in the sample - namely, the interparticle distance (≈124nm) and the colloidal grains local arrangement (≈1µm) - can be investigated with Bragg coherent EUV scatterometry and ptychographic imaging within the same experiment simply by tuning the EUV spot size at the sample plane (5µm and 15µm respectively). In addition, the high spatial coherence of high harmonics light, combined with advances in imaging techniques, makes it possible to image near-periodic structures quantitatively and nondestructively, and enables the observation of the extended order of quasi-periodic colloidal crystals, with a spatial resolution better than 20nm. In the future, by harnessing the high time-resolution of tabletop high harmonics, this technique can be extended to dynamically image the three-dimensional electronic, magnetic, and transport properties of functional nanosystems.

17.
Phys Chem Chem Phys ; 20(22): 15411-15418, 2018 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-29796574

RESUMO

This study uses in situ vibrational spectroscopy to probe nitrogen adsorption to porous carbon materials, including single-wall carbon nanotubes and Maxsorb super-activated carbon, demonstrating how the nitrogen Raman stretch mode is perturbed by adsorption. In all porous carbon samples upon N2 physisorption in the mesopore filling regime, the N2 Raman mode downshifts by ∼2 cm-1, a downshift comparable to liquid N2. The relative intensity of this mode increases as pressure is increased to saturation, and trends in the relative intensity parallel the volumetric gas adsorption isotherm. This mode with ∼2 cm-1 downshift is thus attributed to perturbations arising due to N2-N2 interactions in a condensed film. The mode is also observed for the activated carbon at 298 K, and the relative intensity once again parallels the gas adsorption isotherm. For select samples, a mode with a stronger downshift (>4 cm-1) is observed, and the stronger downshift is attributed to stronger N2-carbon surface interactions. Simulations for a N2 surface film support peak assignments. These results suggest that N2 vibrational spectroscopy could provide an indication of the presence or absence of porosity for very small quantities of samples.

18.
J Phys Chem Lett ; 9(8): 2031-2037, 2018 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-29561621

RESUMO

The chemical stability of solid cubane under high-pressure was examined with in situ Raman spectroscopy and synchrotron powder X-ray diffraction (PXRD) in a diamond anvil cell (DAC) up to 60 GPa. The Raman modes associated with solid cubane were assigned by comparing experimental data with calculations based on density functional perturbation theory, and low-frequency lattice modes are reported for the first time. The equation of state of solid cubane derived from the PXRD measurements taken during compression gives a bulk modulus of 14.5(2) GPa. In contrast with previous work and chemical intuition, PXRD and Raman data indicate that solid cubane exhibits anomalously large stability under extreme pressure, despite its immensely strained 90° C-C-C bond angles.

19.
J Am Chem Soc ; 140(15): 4969-4972, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29569919

RESUMO

Carbon nanothreads are a new one-dimensional sp3 carbon nanomaterial. They assemble into hexagonal crystals in a room temperature, nontopochemical solid-state reaction induced by slow compression of benzene to 23 GPa. Here we show that pyridine also reacts under compression to form a well-ordered sp3 product: C5NH5 carbon nitride nanothreads. Solid pyridine has a different crystal structure from solid benzene, so the nontopochemical formation of low-dimensional crystalline solids by slow compression of small aromatics may be a general phenomenon that enables chemical design of properties. The nitrogen in the carbon nitride nanothreads may improve processability, alters photoluminescence, and is predicted to reduce the bandgap.

20.
Phys Chem Chem Phys ; 20(10): 7282-7294, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29485162

RESUMO

The 1 : 1 acetylene-benzene cocrystal, C2H2·C6H6, was synthesized under pressure in a diamond anvil cell (DAC) and its evolution under pressure was studied with single-crystal X-ray diffraction and Raman spectroscopy. C2H2·C6H6 is stable up to 30 GPa, nearly 10× the observed polymerization pressure for molecular acetylene to polyacetylene. Upon mild heating at 30 GPa, the cocrystal was observed to undergo an irreversible transition to a mixture of amorphous hydrocarbon and a crystalline phase with similar diffraction to i-carbon, a nanodiamond polymorph currently lacking a definitive structure. Characterization of this i-carbon-like phase suggests that it remains hydrogenated and may help explain previous observations of nanodiamond polymorphs. Potential reaction pathways in C2H2·C6H6 are discussed and compared with other theoretical extended hydrocarbons that may be obtained through crystal engineering. The cocrystallization of benzene with other more inert gases may provide a novel pathway to selectively control the rich chemistry of these materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA