Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 226(21)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37944479

RESUMO

Many birds routinely fly fast through dense vegetation characterized by variably sized structures and voids. Successfully negotiating these cluttered environments requires maneuvering through narrow constrictions between obstacles. We show that Anna's hummingbirds (Calypte anna) can negotiate apertures less than one wingspan in diameter using a novel sideways maneuver that incorporates continuous, bilaterally asymmetric wing motions. Crucially, this maneuver allows hummingbirds to continue flapping as they negotiate the constriction. Even smaller openings are negotiated via a faster ballistic trajectory characterized by tucked and thus non-flapping wings, which reduces force production and increases descent rate relative to the asymmetric technique. Hummingbirds progressively shift to the swept method as they perform hundreds of consecutive transits, suggesting increased locomotor performance with task familiarity. Initial use of the slower asymmetric transit technique may allow birds to better assess upcoming obstacles and voids, thereby reducing the likelihood of subsequent collisions. Repeated disruptions of normal wing kinematics as birds negotiate tight apertures may determine the limits of flight performance in structurally complex environments. These strategies for aperture transit and associated flight trajectories can inform designs and algorithms for small aerial vehicles flying within cluttered environments.


Assuntos
Voo Animal , Negociação , Animais , Aves , Fenômenos Biomecânicos , Asas de Animais
2.
PLoS One ; 17(3): e0265911, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35325004

RESUMO

Bees flying through natural landscapes frequently encounter physical challenges, such as wind and cluttered vegetation, but the influence of these factors on flight performance remains unknown. We analyzed 548 videos of wild-caught honeybees (Apis mellifera) flying through an enclosure containing a field of vertical obstacles that bees could choose to fly within (through open corridors, without maneuvering) or above. We varied obstacle field height and wind condition (still, headwinds or tailwinds), and examined how these factors affected bees' flight altitude, ground speed, and side-to-side casting motions (lateral excursions). When obstacle fields were short, bees flew at altitudes near the midpoint between the tunnel floor and ceiling. When obstacle fields approached or exceeded this midpoint, bees tended to increase their altitude, but they did not always avoid flying through obstacles, despite having the freedom to do so. Bees that flew above the obstacles exhibited 40% faster ground speeds and 36% larger lateral excursions than bees that flew within the obstacle fields. Wind did not affect flight altitude, but bees flew 12-19% faster in tailwinds, and their lateral excursions were 19% larger when flying in headwinds or tailwinds, as compared to still air. Our results show that bees flying through complex environments display flexibility in their route choices (i.e., flying above obstacles in some trials and through them in others), which affects their overall flight performance. Similar choices in natural landscapes could have broad implications for foraging efficiency, pollination, and mortality in wild bees.


Assuntos
Esportes , Vento , Altitude , Animais , Abelhas , Voo Animal , Movimento (Física)
3.
Sci Rep ; 10(1): 13747, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792648

RESUMO

Animals have evolved adaptations to deal with environmental challenges. For instance, voluntarily releasing appendages (autotomy) to escape potential predators. Although it may enhance immediate survival, this self-imposed bodily damage may convey long-term consequences. Hence, compensatory strategies for this type of damage might exist. We experimentally induced autotomy in Prionostemma harvestmen. These arachnids are ideal to examine this topic because they show high levels of leg loss in the field but do not regenerate their legs. We video-recorded animals moving on a horizontal track and reconstructed their 3D trajectories with custom software tools to measure locomotor performance. Individuals that lost either three legs total or two legs on the same side of the body showed an immediate and substantial decrease in velocity and acceleration. Surprisingly, harvestmen recovered initial performance after 2 days. This is the quickest locomotor recovery recorded for autotomizing animals. We also found post-autotomy changes in stride and postural kinematics, suggesting a role for kinematic adjustments in recovery. Additionally, following leg loss, some animals changed the gaits used during escape maneuvers, and/or recruited the 'sensory' legs for locomotion. Together, these findings suggest that harvestmen are mechanically robust to the bodily damage imposed by leg loss.


Assuntos
Adaptação Fisiológica/fisiologia , Extremidades/lesões , Marcha/fisiologia , Locomoção/fisiologia , Aranhas/fisiologia , Animais , Comportamento Animal/fisiologia , Fenômenos Biomecânicos/fisiologia , Costa Rica , Extremidades/fisiologia
4.
J Exp Biol ; 223(Pt 14)2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32561633

RESUMO

Bees often forage in habitats with cluttered vegetation and unpredictable winds. Navigating obstacles in wind presents a challenge that may be exacerbated by wind-induced motions of vegetation. Although wind-blown vegetation is common in natural habitats, we know little about how the strategies of bees for flying through clutter are affected by obstacle motion and wind. We filmed honeybees Apis mellifera flying through obstacles in a flight tunnel with still air, headwinds or tailwinds. We tested how their ground speeds and centering behavior (trajectory relative to the midline between obstacles) changed when obstacles were moving versus stationary, and how their approach strategies affected flight outcome (successful transit versus collision). We found that obstacle motion affects ground speed: bees flew slower when approaching moving versus stationary obstacles in still air but tended to fly faster when approaching moving obstacles in headwinds or tailwinds. Bees in still air reduced their chances of colliding with obstacles (whether moving or stationary) by reducing ground speed, whereas flight outcomes in wind were not associated with ground speed, but rather with improvement in centering behavior during the approach. We hypothesize that in challenging flight situations (e.g. navigating moving obstacles in wind), bees may speed up to reduce the number of wing collisions that occur if they pass too close to an obstacle. Our results show that wind and obstacle motion can interact to affect flight strategies in unexpected ways, suggesting that wind-blown vegetation may have important effects on foraging behaviors and flight performance of bees in natural habitats.


Assuntos
Voo Animal , Vento , Animais , Abelhas , Ecossistema , Movimento (Física) , Asas de Animais
5.
Comput Vis ECCV ; 12363: 1-17, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-35822859

RESUMO

Automated capture of animal pose is transforming how we study neuroscience and social behavior. Movements carry important social cues, but current methods are not able to robustly estimate pose and shape of animals, particularly for social animals such as birds, which are often occluded by each other and objects in the environment. To address this problem, we first introduce a model and multi-view optimization approach, which we use to capture the unique shape and pose space displayed by live birds. We then introduce a pipeline and experiments for keypoint, mask, pose, and shape regression that recovers accurate avian postures from single views. Finally, we provide extensive multi-view keypoint and mask annotations collected from a group of 15 social birds housed together in an outdoor aviary. The project website with videos, results, code, mesh model, and the Penn Aviary Dataset can be found at https://marcbadger.github.io/avian-mesh.

6.
J Exp Biol ; 222(Pt 3)2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718291

RESUMO

Flying organisms frequently confront the challenge of maintaining stability when moving within highly dynamic airflows near the Earth's surface. Either aerodynamic or inertial forces generated by appendages and other structures, such as the tail, may be used to offset aerial perturbations, but these responses have not been well characterized. To better understand how hummingbirds modify wing and tail motions in response to individual gusts, we filmed Anna's hummingbirds as they negotiated an upward jet of fast-moving air. Birds exhibited large variation in wing elevation, tail pitch and tail fan angles among transits as they repeatedly negotiated the same gust, and often exhibited a dramatic decrease in body angle (29±6 deg) post-transit. After extracting three-dimensional kinematic features, we identified a spectrum of control strategies for gust transit, with one extreme involving continuous flapping, no tail fanning and little disruption to body posture (23±3 deg downward pitch), and the other extreme characterized by dorsal wing pausing, tail fanning and greater downward body pitch (38±4 deg). The use of a deflectable tail on a glider model transiting the same gust resulted in enhanced stability and can easily be implemented in the design of aerial robots.


Assuntos
Aves/fisiologia , Voo Animal/fisiologia , Vento , Asas de Animais/fisiologia , Animais , Fenômenos Biomecânicos , Masculino
7.
PLoS One ; 10(9): e0138003, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26421845

RESUMO

Electrostatic phenomena are known to enhance both wind- and insect-mediated pollination, but have not yet been described for nectar-feeding vertebrates. Here we demonstrate that wild Anna's Hummingbirds (Calypte anna) can carry positive charges up to 800 pC while in flight (mean ± s.d.: 66 ± 129 pC). Triboelectric charging obtained by rubbing an isolated hummingbird wing against various plant structures generated charges up to 700 pC. A metal hummingbird model charged to 400 pC induced bending of floral stamens in four plants (Nicotiana, Hemerocallis, Penstemon, and Aloe spp.), and also attracted falling Lycopodium spores at distances of < 2 mm. Electrostatic forces may therefore influence pollen transfer onto nectar-feeding birds.


Assuntos
Aves/fisiologia , Voo Animal/fisiologia , Polinização/fisiologia , Eletricidade Estática , Animais
8.
J Exp Biol ; 218(Pt 3): 480-90, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25452503

RESUMO

The complexity of low speed maneuvering flight is apparent from the combination of two critical aspects of this behavior: high power and precise control. To understand how such control is achieved, we examined the underlying kinematics and resulting aerodynamic mechanisms of low speed turning flight in the pigeon (Columba livia). Three birds were trained to perform 90 deg level turns in a stereotypical fashion and detailed three-dimensional (3D) kinematics were recorded at high speeds. Applying the angular momentum principle, we used mechanical modeling based on time-varying 3D inertia properties of individual sections of the pigeon's body to separate angular accelerations of the torso based on aerodynamics from those based on inertial effects. Directly measured angular accelerations of the torso were predicted by aerodynamic torques, justifying inferences of aerodynamic torque generation based on inside wing versus outside wing kinematics. Surprisingly, contralateral asymmetries in wing speed did not appear to underlie the 90 deg aerial turns, nor did contralateral differences in wing area, angle of attack, wingbeat amplitude or timing. Instead, torso angular accelerations into the turn were associated with the outside wing sweeping more anteriorly compared with a more laterally directed inside wing. In addition to moving through a relatively more retracted path, the inside wing was also more strongly pronated about its long axis compared with the outside wing, offsetting any difference in aerodynamic angle of attack that might arise from the observed asymmetry in wing trajectories. Therefore, to generate roll and pitch torques into the turn, pigeons simply reorient their wing trajectories toward the desired flight direction. As a result, by acting above the center of mass, the net aerodynamic force produced by the wings is directed inward, generating the necessary torques for turning.


Assuntos
Columbidae/fisiologia , Voo Animal/fisiologia , Aceleração , Animais , Fenômenos Biomecânicos , Modelos Biológicos , Movimento/fisiologia , Torque , Gravação em Vídeo , Asas de Animais/fisiologia
9.
Proc Natl Acad Sci U S A ; 108(50): 19990-5, 2011 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-22123982

RESUMO

Turning is crucial for animals, particularly during predator-prey interactions and to avoid obstacles. For flying animals, turning consists of changes in (i) flight trajectory, or path of travel, and (ii) body orientation, or 3D angular position. Changes in flight trajectory can only be achieved by modulating aerodynamic forces relative to gravity. How birds coordinate aerodynamic force production relative to changes in body orientation during turns is key to understanding the control strategies used in avian maneuvering flight. We hypothesized that pigeons produce aerodynamic forces in a uniform direction relative to their bodies, requiring changes in body orientation to redirect those forces to turn. Using detailed 3D kinematics and body mass distributions, we examined net aerodynamic forces and body orientations in slowly flying pigeons (Columba livia) executing level 90° turns. The net aerodynamic force averaged over the downstroke was maintained in a fixed direction relative to the body throughout the turn, even though the body orientation of the birds varied substantially. Early in the turn, changes in body orientation primarily redirected the downstroke aerodynamic force, affecting the bird's flight trajectory. Subsequently, the pigeon mainly reacquired the body orientation used in forward flight without affecting its flight trajectory. Surprisingly, the pigeon's upstroke generated aerodynamic forces that were approximately 50% of those generated during the downstroke, nearly matching the relative upstroke forces produced by hummingbirds. Thus, pigeons achieve low speed turns much like helicopters, by using whole-body rotations to alter the direction of aerodynamic force production to change their flight trajectory.


Assuntos
Aeronaves , Columbidae/fisiologia , Voo Animal/fisiologia , Movimento/fisiologia , Animais , Fenômenos Biomecânicos , Modelos Biológicos , Rotação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA