Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 102(22): 9759-9770, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30143838

RESUMO

Recent studies evaluated the impact of dust exposure on pure and mixed cultures of Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae, and Pseudomonas aeruginosa, revealing increased biofilm formation and altered sensitivities to H2O2. In this study, we examined the impact of lead (Pb), house, road, and combined dust on K. pneumoniae and P. aeruginosa in pure, mixed, or eukaryotic co-culture with human alveolar basal epithelial (A549) cells. Although no impact on pure or mixed culture growth was observed when bacteria were exposed to Pb, house, or road dust, increased biofilm was produced by P. aeruginosa in the presence of 0.8 µg/mL of Pb, while P. aeruginosa and K. pneumoniae both exhibited increased biofilm production in the presence of 100 µg/mL of house, road, and combined dust. When co-cultured with eukaryotic A549 cells, both bacteria demonstrated increased proliferation 6 h post-infection when challenged with house, road, or combined dust. However, when mixed bacteria were co-cultured with A549 cells, P. aeruginosa exhibited a significant ~ 1.5-fold increased proliferation in the presence of 100 µg/mL house, road, or combined dust. In sharp contrast, K. pneumoniae exhibited significantly reduced proliferation, when in mixed (with P. aeruginosa) A-549 co-culture, following exposure to 100 µg/mL house, road, or combined dust. To evaluate whether a host cell inflammatory response contributed to this disparity, NF-κB activation was evaluated in each co-culture infection. K. pneumoniae-A-549 co-culture, treated with 100 µg/mL of combined dust, exhibited no alterations in NF-κB translocation to the nucleus. Further, no differences in cytokine production were observed in the K. pneumoniae A-549 co-culture treated with 100 µg/mL of house dust. Taken together, these data suggest that within the lung environment, mixed infections exposed to dust or dust contaminants could benefit one organism at the expense of the other, independent of the activation of inflammatory pathways.


Assuntos
Poeira/análise , Enterococcus faecalis/crescimento & desenvolvimento , Células Epiteliais/microbiologia , Escherichia coli/crescimento & desenvolvimento , Células Eucarióticas/microbiologia , Klebsiella pneumoniae/crescimento & desenvolvimento , Pseudomonas aeruginosa/crescimento & desenvolvimento , Linhagem Celular , Técnicas de Cocultura , Enterococcus faecalis/fisiologia , Escherichia coli/fisiologia , Humanos , Klebsiella pneumoniae/fisiologia , Pulmão/citologia , Pulmão/microbiologia , Pseudomonas aeruginosa/fisiologia
2.
Appl Microbiol Biotechnol ; 101(18): 7027-7039, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28776099

RESUMO

On a daily basis, humans, and their colonizing microbiome, are exposed to both indoor and outdoor dust, containing both deleterious organic and inorganic contaminants, through dermal contact, inhalation, and ingestion. Recent studies evaluating the dust exposure responses of opportunistic pathogens, such as Escherichia coli and Pseudomonas aeruginosa, revealed significant increases in biofilm formation following dust exposure. In this study, the effects of dust exposure on mixed bacterial cultures as well as HT-29 co-cultures were evaluated. As it was observed in pure, single bacterial cultures earlier, neither indoor nor outdoor dust exposure (at concentrations of 100 µg/mL) influenced the growth of mixed bacterial liquid cultures. However, when in paired mixed cultures, dust exposure increased sensitivity to oxidative stress and significantly enhanced biofilm formation (outdoor dust). More specifically, mixed cultures (E. coli-Klebsiella pneumoniae, K. pneumoniae-P. aeruginosa, and E. coli-P. aeruginosa) exhibited increased sensitivity to 20 and 50 mM of H2O2 in comparison to their pure, single bacterial culture counterparts and significantly enhanced biofilm production for each mixed culture. Finally, bacterial proliferation during a eukaryotic gut cell (HT29) co-culture was significantly more robust for both K. pneumoniae and P. aeruginosa when exposed to both house and road dust; however, E. coli only experienced significantly enhanced proliferation, in HT29 co-culture, when exposed to road dust. Taken together, our findings demonstrate that bacteria respond to dust exposure differently when in the presence of multiple bacterial species or when in the presence of human gut epithelial cells, than when grown in isolation.


Assuntos
Biofilmes/crescimento & desenvolvimento , Poeira/análise , Escherichia coli/fisiologia , Klebsiella pneumoniae/fisiologia , Microbiota , Pseudomonas aeruginosa/fisiologia , Técnicas de Cocultura , Exposição Ambiental , Microbiologia Ambiental , Trato Gastrointestinal/microbiologia , Células HT29 , Humanos , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA