Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(59): 123925-123938, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37995030

RESUMO

Aflatoxin M1 (AFM1) is a significant contaminant of food, particularly dairy products and can resist various industrial processes. Several probiotic strains like Lactobacillus plantarum are known to reduce aflatoxin availability in synthetic media and some food products. The current work investigated the possible chitosan coating prophylactic efficacy of Lactobacillus plantarum RM1 nanoemulsion (CS-RM1) against AFM1-induced hepatorenal toxicity in rats. Twenty-eight male Wistar rats were divided into four groups (n = 7) as follows: group 1 received normal saline, group 2 received CS-RM1 (1mL contains 6.7 × 1010 CFU), group 3 received AFM1 (60 µg/kg bwt), and group 4 received both CS-RM1(1 mL contains 6.7 × 1010 CFU) and AFM1 (60 µg/kg bwt). All receiving materials were given to rats daily via oral gavage for 28 days. AFM1 caused a significant elevation in serum levels of ALT, AST, ALP, uric acid, urea, and creatinine with marked alterations in protein and lipid profiles. Additionally, AFM1 caused marked pathological changes in the liver and kidneys, such as cellular necrosis, vascular congestion, and interstitial inflammation. AFM1 also increased the MDA levels and decreased several enzymatic and non-enzymatic antioxidants. Liver and kidney sections of the AFM1 group displayed strong caspase-3, TNF-α, and iNOS immunopositivity. Co-treatment of CS-RM1 with AFM1 significantly lowered the investigated toxicological parameter changes and markedly improved the microscopic appearance of liver and kidneys. In conclusion, AFM1 induces hepatorenal oxidative stress damage via ROS overgeneration, which induces mitochondrial caspase-3-dependent apoptosis and inflammation. Furthermore, CS-RM1 can reduce AFM1 toxicity in both the liver and kidneys. The study recommends adding CS-RM1 to milk and milk products for AFM1-elimination.


Assuntos
Quitosana , Lactobacillus plantarum , Ratos , Masculino , Animais , Caspase 3 , Quitosana/farmacologia , Ratos Wistar , Leite , Inflamação , Contaminação de Alimentos
2.
BMC Microbiol ; 23(1): 289, 2023 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-37805450

RESUMO

BACKGROUND: Although the mechanism of action of nanoemulsion is still unclear, the modern use of nanoemulsions made from natural extracts as antimicrobial and anti-aflatoxigenic agents represents a potential food preservation and a safety target. METHODS: Two natural nanoemulsion extracts of Crocus sativus (the saffron flower) and Achillea millefolium (the yarrow flower) were produced in the current study using a low-energy method that included carboxymethylcellulose and Arabic gum. The synthesized nanoemulsion was fully identified by different analytical methods. Detection of the volatile content was completed using GC-MS analysis. The antioxidant potential, and phenolic compounds content were analyzed in the extractions. The synthesized nanoemulsions were screened for their antimicrobial potential in addition to their anti-aflatoxigenic activity. RESULTS: The droplet size of Saffron flowers was finer (121.64 ± 2.18 nm) than yarrow flowers (151.21 ± 1.12 nm). The Zeta potential measurements of the yarrow flower (-16.31 ± 2.54 mV) and the saffron flower (-18.55 ± 2.31 mV) both showed high stability, along with low PDI values (0.34-0.41). The nanoemulsion of yarrow flower revealed 51 compounds using gas chromatography-mass spectrometry (GCMS), with hexanal (16.25%), ß-Pinene (7.41%), ß-Myrcene (5.24%), D-Limonene (5.58%) and Caryophyllene (4.38%) being the most prevalent. Additionally, 31 compounds were detected in the saffron nanoemulsion, with D-limonene (4.89%), isophorone (12.29%), 4-oxy isophorone (8.19%), and safranal (44.84%) being the most abundant. Compared to the nanoemulsion of the yarrow flower, the saffron nanoemulsion had good antibacterial and antifungal activity. Saffron nanoemulsion inhibited total fungal growth by 69.64-71.90% in a simulated liquid medium and demonstrated the most significant decrease in aflatoxin production. Infected strawberry fruits coated with nanoemulsion extracts exhibited high antimicrobial activity in the form of saffron flower and yarrow flower extract nanoemulsions, which inhibited and/or controlled the growth of Aspergillus fungi. Due to this inhibition, the lag phase was noticeably prolonged, the cell load decreased, and the stability time increased. CONCLUSION: This study will contribute to expanding the theoretical research and utilization of nanoemulsions as green protective agents in agricultural and food industries for a promising protection from the invasion of some pathogenic bacteria and fungi.


Assuntos
Achillea , Crocus , Achillea/química , Crocus/química , Conservantes de Alimentos , Limoneno/análise , Flores , Antibacterianos , Extratos Vegetais/farmacologia , Extratos Vegetais/química
3.
Heliyon ; 9(8): e18620, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37554840

RESUMO

Food byproduct oils may have antimicrobial impacts when used in coating and preservation. Nuts are known to suffer from toxigenic fungi and their related mycotoxins. The present study utilized lime oil emulsion to minimize fungal infection and reduce aflatoxin B1 (AFB1). Besides, it evaluated lime oil's impact on nuts' protection against oxidation and deterioration during storage. Lime oil was extracted using hydrodistillation, and gas chromatography (GC-MS) evaluated volatile constituents. Oil was loaded into a composite emulsion of whey protein, Arabic gum, gelatin, and carboxymethyl cellulose. The antimicrobial and antifungal properties of the nut-coating emulsion were evaluated. A simulated Aspergillus flavus infection experiment evaluated composite resistance for fungal infection and AFB1 production. Oxidation and acidity changes in nuts oil composition were evaluated by proximate analysis, fatty acid composition, and induction period. The oil majority was recorded for terpenes and monoterpenes, including limonene (44.69 ± 2.11%). The emulsion was characterized by zeta potential (-21.16 ± 1.28 mV), stability (99.61 ± 0.02%), and polydispersity index (0.41 ± 0.05). Antimicrobial properties recorded a high antibacterial inhibition zone (up to 28.37 ± 0.11 mm) and anti-mycotoxigenic fungi (up to 37.61 ± 0.24 mm). For the simulated experiment, fungal growth reduction ranged between 78.02% for filmed-peanut and 84.5% for filmed-almond, while AFB1 was not detected in filmed hazelnut and almond. During the one-year storage of samples, there was a slight change in nut oil composition and oxidation progress in filmed nuts, while there was a significant change in non-filmed nuts. The result recommended lime-composite as an edible nut coating that prevents aflatoxigenic contamination, oxidation changes, and improved shelf life.

4.
Biotechnol Rep (Amst) ; 38: e00799, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37206916

RESUMO

Aflatoxins are toxic carcinogens and mutagens formed by some moulds, specifically Aspergillus spp. Therefore, this study aimed to extract and identify bioactive secondary metabolites from Lactobacillus species, to evaluate their efficacy in reducing fungal growth and aflatoxin production and to investigate their toxicity. The bioactive secondary metabolites of Lactobacillus species showed variable degrees of antifungal activity, whereas L. rhamnosus ethyl acetate extract No. 5 exhibited the highest antifungal activity and, thus, was selected for further identification studies. Data revealed that L. rhamnosus ethyl acetate extract No. 5 produced various organic acids, volatile organic compounds and polyphenols, displayed antifungal activity against A. flavus, and triggered morphological changes in fungal conidiophores and conidiospores. L. rhamnosus ethyl acetate extract No. 5 at a 9 mg/mL concentration reduced AFB1 production by 99.98%. When the effect of L. rhamnosus ethyl acetate extract No. 5 on brine shrimp mortality was studied, the extract attained a 100% mortality at a concentration of 400 µg/mL, with an IC50 of 230 µg/mL. Meanwhile, a mouse bioassay was performed to assess the toxicity of L. rhamnosus ethyl acetate extract No. 5, whereas there were no harmful effects or symptoms in mice injected with L. rhamnosus ethyl acetate extract at concentrations of 1, 3, 5, 7, and 9 mg/kg body weight.

5.
Foods ; 12(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37107421

RESUMO

Shea butter is becoming increasingly popular in foods, cosmetics and pharmaceutical products. This work aims to study the effect of the refining process on the quality and stability of fractionated and mixed shea butters. Crude shea butter, refined shea stearin, olein and their mixture (1:1 w/w) were analyzed for fatty acids, triacylglycerol composition, peroxide value (PV), free fatty acids (FFA), phenolic (TPC), flavonoid (TFC), unsaponifiable matter (USM), tocopherol and phytosterol content. Additionally, the oxidative stability, radical scavenging activity (RSA), antibacterial and antifungal activities were evaluated. The two main fatty acids in the shea butter samples were stearic and oleic. The refined shea stearin showed lower PV, FFA, USM, TPC, TFC, RSA, tocopherol and sterol content than crude shea butter. A higher EC50 was observed, but antibacterial activity was much lower. The refined olein fraction was characterized by lower PV, FFA and TFC in comparison with crude shea butter, but USM, TPC, RSA, EC50, tocopherol and sterol content was unchanged. The antibacterial activity was higher, but the antifungal activity was lower than those of crude shea butter. When both fractions were mixed, their fatty acid and triacylglycerol composition were similar to those of crude shea butter, but other parameters were different.

6.
Plants (Basel) ; 11(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36079681

RESUMO

The present investigation aimed to study the impact of roasting on the chemical composition and biological activities of sweet and bitter lupin seed oils. Lupin oils were extracted using petroleum ether (40-60) with ultrasonic assisted method. Lupin Fatty acids, phytosterols, carotenoids, and total phenolic contents were determined. In addition, antioxidant, antimicrobial, and antifungal activities were evaluated. The results showed a ratio between 7.50% to 9.28% of oil content in lupin seed. Unroasted (bitter and sweet) lupin oil contained a high level of oleic acid ω9 (42.65 and 50.87%), followed by linoleic acid ω6 (37.3 and 34.48%) and linolenic acid ω3 (3.35 and 6.58%), respectively. Concerning phytosterols, unroasted (bitter and sweet lupin) seed oil reflected high values (442.59 and 406.18 mg/100 g oil, respectively). Bitter lupin oil contains a high amount of phenolics, although a lower antioxidant potency compared to sweet lupin oil. This phenomenon could be connected with the synergistic effect between phenolics and carotenoids higher in sweet lupin oil. The results reflected a more efficiently bitter lupin oil against anti-toxigenic fungi than sweet lupin oil. The roasting process recorded enhances the antimicrobial activity of bitter and sweet lupin seed oil, which is linked to the increment in bioactive components during the roasting process. These results concluded that lupin oil deems a novel functional ingredient and a valuable dietary fat source. Moreover, lupin oil seemed to have antifungal properties, which recommended its utilization as a carrier for active-antifungal compounds in food products.

7.
Molecules ; 27(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35566014

RESUMO

COVID-19 is still a global pandemic that has not been stopped. Many traditional medicines have been demonstrated to be incredibly helpful for treating COVID-19 patients while fighting the disease worldwide. We introduced 10 bioactive compounds derived from traditional medicinal plants and assessed their potential for inhibiting viral spike protein (S-protein), Papain-like protease (PLpro), and RNA dependent RNA polymerase (RdRp) using molecular docking protocols where we simulate the inhibitors bound to target proteins in various poses and at different known binding sites using Autodock version 4.0 and Chimera 1.8.1 software. Results found that the chicoric acid, quinine, and withaferin A ligand strongly inhibited CoV-2 S -protein with a binding energy of -8.63, -7.85, and -7.85 kcal/mol, respectively. Our modeling work also suggested that curcumin, quinine, and demothoxycurcumin exhibited high binding affinity toward RdRp with a binding energy of -7.80, -7.80, and -7.64 kcal/mol, respectively. The other ligands, namely chicoric acid, demothoxycurcumin, and curcumin express high binding energy than the other tested ligands docked to PLpro with -7.62, -6.81, and -6.70 kcal/mol, respectively. Prediction of drug-likeness properties revealed that all tested ligands have no violations to Lipinski's Rule of Five except cepharanthine, chicoric acid, and theaflavin. Regarding the pharmacokinetic behavior, all ligand predicted to have high GI-absorption except chicoric acid and theaflavin. At the same way chicoric acid, withaferin A, and withanolide D predicted to be substrate for multidrug resistance protein (P-gp substrate). Caffeic acid, cepharanthine, chicoric acid, withaferin A, and withanolide D also have no inhibitory effect on any cytochrome P450 enzymes. Promisingly, chicoric acid, quinine, curcumin, and demothoxycurcumin exhibited high binding affinity on SARS-CoV-2 target proteins and expressed good drug-likeness and pharmacokinetic properties. Further research is required to investigate the potential uses of these compounds in the treatment of SARS-CoV-2.


Assuntos
Tratamento Farmacológico da COVID-19 , Curcumina , Antivirais/farmacologia , Antivirais/uso terapêutico , Humanos , Ligantes , Simulação de Acoplamento Molecular , Peptídeo Hidrolases , Quinina , RNA Polimerase Dependente de RNA , SARS-CoV-2
8.
Toxicol Rep ; 9: 628-635, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399213

RESUMO

Organophosphorus pesticides (OPPs) cause great risk to human health as they are used globally. Therefore, the purpose of this research was to determine the total phenolics, flavonoids, and antioxidant activity of agricultural waste, as well as to control the pesticide residues (diazinon, and parathion) at a laboratory scale level using dried-milled fruit wastes. The pesticide residues parathion and diazinon were used at concentrations of 0.094, and 1.90 mg/mL respectively. The fruit wastes used in this study were orange and banana peels, as well as date stones, and they were used in two concentrations (3 and 9 g/30 mL deionized water). The total phenolic and flavonoid contents and the antioxidant activity were measured in fruit wastes. Also, the Fourier transmitted infrared (FTIR) spectra of fruit wastes were established to figure out the nature of the functional groups found before and after pesticide residues removal. The ability of fruit wastes to remove pesticides residues was determined using Gas Chromatography/Mass spectrometry (GC/MS). Data showed that date stones contained a higher amount of total phenolic content than orange and banana peels. However, orange peels contained a higher amount of total flavonoid contents than those of date stones and banana peels. As for antioxidant activity, banana peels recorded the higher antioxidant activity, followed by orange peels and date stones respectively. Results revealed that there was no relation between total phenolic content, total flavonoid content, and antioxidant activity. Results also indicated that date stones at a concentration of 9 g successfully reduced diazinon (81.18%), followed by banana (63.86%) and orange peels (43.42%) respectively, whereas parathion was reduced by banana peels at a concentration of 9 g (50.34%), followed by orange peels (45.28%), and date stones (39.52%) respectively. This study demonstrated that agricultural wastes were effective in the adsorption of diazinon from water, and their use is considered safe for the environment.

9.
Toxins (Basel) ; 13(11)2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34822530

RESUMO

Toxin-contaminated foods and beverages are a major source of illness, may cause death, and have a significant negative economic impact worldwide. Aflatoxin B1 (AFB1) is a potent toxin that may induce cancer after chronic low-level exposure. This study developed a quantitative recombinant AflR gene antiserum ELISA technique for aflatoxin B1 detection in contaminated food products. Aflatoxin B1 residuals from 36 food samples were analyzed with HPLC and VICAM. DNA was extracted from aflatoxin-contaminated samples and the AflR gene amplified using PCR. PCR products were purified and ligated into the pGEM-T vector. Recombinant plasmids were sequenced and transformed into competent E. coli (BL21). Molecular size and B-cell epitope prediction for the recombinant protein were assessed. The purified protein was used to induce the production of IgG antibodies in rabbits. Serum IgG was purified and labeled with alkaline phosphatase. Finally, indirect-ELISA was used to test the effectiveness of polyclonal antibodies for detection of aflatoxin B1 in food samples.


Assuntos
Aflatoxina B1/análise , Ensaio de Imunoadsorção Enzimática/métodos , Contaminação de Alimentos/análise , Microbiologia de Alimentos/métodos , Cromatografia Líquida de Alta Pressão/métodos
10.
Toxins (Basel) ; 13(11)2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34822573

RESUMO

Bottle gourd seeds are surrounded by innumerable bioactive components of phytochemicals. This work aimed to evaluate the effectiveness of bottle gourd extracts as antimicrobial and an-ti-mycotoxigenic against toxigenic fungi and mycotoxins. Polar and nonpolar extracts were made from the seeds. The polar eco-friendly extract was prepared by an ultrasonication-assisted technique utilizing aqueous isopropanol (80%), whereas the non-polar extract was obtained using petroleum ether (40-60). The antioxidant efficacy, total phenolic content, and flavonoid content of the extracts were all measured. The fatty acid profile was measured using GC equipment, and the influence on toxigenic fungus and mycotoxin release was also investigated. The antioxidant efficacy of the polar extract is reflected. The total phenolic values of the oil and polar extract were 15.5 and 267 mg of GAE/g, respectively. The total flavonoid content of the oil was 2.95 mg catechol/g, whereas the isopropyl extract of seeds contained 14.86 mg catechol/g. The polar extract inhibited the DPPH more effectively than oil. When compared to other seed oils, the fatty acid composition differed. The pathogens were distinguished by the MIC and MFC for the polar extract. Three sterols were found in the oil, with a high concentration of B-sitosterols. The oil's valuable -carotene content and tocopherol content were recorded. When compared to traditional antibiotics, the polar extract has shown promising antimicrobial activity against infections and toxigenic fungi. Bottle gourd extracts, as a non-traditional bioactive source, are viewed as a potentially promising alternative that might contribute to increased food safety, shelf-life, and security.


Assuntos
Cucurbitaceae/química , Fungos/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Micotoxinas/química , Extratos Vegetais/farmacologia , Sementes/química , Antioxidantes/farmacologia , Flavonoides/farmacologia , Fenóis/farmacologia , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA