Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
PLOS Glob Public Health ; 4(5): e0003091, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38768243

RESUMO

Sensitive and accurate malaria diagnosis is required for case management to accelerate control efforts. Diagnosis is particularly challenging where multiple Plasmodium species are endemic, and where P. falciparum hrp2/3 deletions are frequent. The Noul miLab is a fully automated portable digital microscope that prepares a blood film from a droplet of blood, followed by staining and detection of parasites by an algorithm. Infected red blood cells are displayed on the screen of the instrument. Time-to-result is approximately 20 minutes, with less than two minutes hands-on time. We evaluated the miLab among 659 suspected malaria patients in Gondar, Ethiopia, where P. falciparum and P. vivax are endemic, and the frequency of hrp2/3 deletions is high, and 991 patients in Ghana, where P. falciparum transmission is intense. Across both countries combined, the sensitivity of the miLab for P. falciparum was 94.3% at densities >200 parasites/µL by qPCR, and 83% at densities >20 parasites/µL. The miLab was more sensitive than local microscopy, and comparable to RDT. In Ethiopia, the miLab diagnosed 51/52 (98.1%) of P. falciparum infections with hrp2 deletion at densities >20 parasites/µL. Specificity of the miLab was 94.0%. For P. vivax diagnosis in Ethiopia, the sensitivity of the miLab was 97.0% at densities >200 parasites/µL (RDT: 76.8%, microscopy: 67.0%), 93.9% at densities >20 parasites/µL, and specificity was 97.6%. In Ethiopia, where P. falciparum and P. vivax were frequent, the miLab assigned the wrong species to 15/195 mono-infections at densities >20 parasites/µL by qPCR, and identified only 5/18 mixed-species infections correctly. In conclusion, the miLab was more sensitive than microscopy and thus is a valuable addition to the toolkit for malaria diagnosis, particularly for areas with high frequencies of hrp2/3 deletions.

2.
Am J Trop Med Hyg ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38697074

RESUMO

Animal African trypanosomiasis, also known as nagana, is caused by Trypanosoma species, which cause significant clinical diseases and lead to losses in animal production. We carried out a cross-sectional survey to investigate the composition of vectors and parasite diversity in two districts in the eastern region of Ghana where pigs and cattle were exposed to tsetse bites. We performed cytochrome c oxidase subunit 1 polymerase chain reaction (PCR) to identify tsetse species and internal transcribed spacer 1 PCR to identify Trypanosoma species. Also, we investigated the source of tsetse blood meal based on mitochondrial cytochrome b gene sequence analysis. A total of 229 tsetse, 65 pigs, and 20 cattle were investigated for trypanosomes. An overall vector density of 4.3 tsetse/trap/day was observed. A trypanosome prevalence of 58.9% (95% CI = 52.5-65.1%), 46.2% (95% CI = 34.6-58.1%), and 0.0% (95% CI = 0.0-16.1%) in tsetse, pigs, and cattle, respectively, was detected. Trypanosoma congolense was predominant, with a prevalence of 33.3% (95% CI = 73.3-86.5%) in tsetse. There was evidence of multiple infections in tsetse and pigs. Approximately 39% of the tsetse were positive for multiple infections of T. congolense and Trypanosoma simiae. Parasite prevalence in pigs across the communities was high, with significant differences associated between locations (χ2 = 28.06, 95% CI = 0.05-0.81, P = 0.0009). Tsetse blood meal analysis revealed feeding on domestic Sus scrofa domesticus (pigs) and Phacochoerus africanus (warthogs). Infective tsetse may transmit trypanosomes to livestock and humans in the communities studied.

3.
Res Sq ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37886535

RESUMO

Background: Accurate diagnosis and timely treatment are crucial in combating malaria. Methods: We evaluated the diagnostic performance of three Rapid Diagnostic Tests (RDTs) in diagnosing febrile patients, namely: Abbott NxTek Eliminate Malaria Ag Pf (detecting HRP2), Rapigen Biocredit Malaria Ag Pf (detecting HRP2 and LDH on separate bands), and SD Bioline Malaria Ag Pf (detecting HRP2). Results were compared to qPCR. Results: Among 449 clinical patients, 45.7% (205/449) tested positive by qPCR for P. falciparum with a mean parasite density of 12.5parasites/µL. The sensitivity of the Biocredit RDT was 52.2% (107/205), NxTek RDT was 49.3% (101/205), and Bioline RDT was 40.5% (83/205). When samples with parasite densities lower than 20 parasites/uL were excluded (n=116), a sensitivity of 88.8% (79/89, NxTek), 89.9% (80/89, Biocredit), and 78.7% (70/89, Bioline) was obtained. All three RDTs demonstrated specificity above 95%. The limits of detection was 84 parasites/µL (NxTek), 56 parasites/µL (Biocredit, considering either HRP2 or LDH), and 331 parasites/µL (Bioline). None of the three qPCR-confirmed P. falciparum positive samples, identified solely through the LDH target, carried hrp2/3 deletions. Conclusion: The Biocredit and NxTek RDTs demonstrated comparable diagnostic efficacies and both RDTs performed better than Bioline RDT.

4.
Parasit Vectors ; 16(1): 205, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37337221

RESUMO

BACKGROUND: Vector bionomics are important aspects of vector-borne disease control programs. Mosquito-biting risks are affected by environmental, mosquito behavior and human factors, which are important for assessing exposure risk and intervention impacts. This study estimated malaria transmission risk based on vector-human interactions in northern Ghana, where indoor residual spraying (IRS) and insecticide-treated nets (ITNs) have been deployed. METHODS: Indoor and outdoor human biting rates (HBRs) were measured using monthly human landing catches (HLCs) from June 2017 to April 2019. Mosquitoes collected were identified to species level, and Anopheles gambiae sensu lato (An. gambiae s.l.) samples were examined for parity and infectivity. The HBRs were adjusted using mosquito parity and human behavioral observations. RESULTS: Anopheles gambiae was the main vector species in the IRS (81%) and control (83%) communities. Indoor and outdoor HBRs were similar in both the IRS intervention (10.6 vs. 11.3 bites per person per night [b/p/n]; z = -0.33, P = 0.745) and control communities (18.8 vs. 16.4 b/p/n; z = 1.57, P = 0.115). The mean proportion of parous An. gambiae s.l. was lower in IRS communities (44.6%) than in control communities (71.7%). After adjusting for human behavior observations and parity, the combined effect of IRS and ITN utilization (IRS: 37.8%; control: 57.3%) on reducing malaria transmission risk was 58% in IRS + ITN communities and 27% in control communities with ITNs alone (z = -4.07, P < 0.001). However, this also revealed that about 41% and 31% of outdoor adjusted bites in IRS and control communities respectively, occurred before bed time (10:00 pm). The mean directly measured annual entomologic inoculation rates (EIRs) during the study were 6.1 infective bites per person per year (ib/p/yr) for IRS communities and 16.3 ib/p/yr for control communities. After considering vector survival and observed human behavior, the estimated EIR for IRS communities was 1.8 ib/p/yr, which represents about a 70% overestimation of risk compared to the directly measured EIR; for control communities, it was 13.6 ib/p/yr (16% overestimation). CONCLUSION: Indoor residual spraying significantly impacted entomological indicators of malaria transmission. The results of this study indicate that vector bionomics alone do not provide an accurate assessment of malaria transmission exposure risk. By accounting for human behavior parameters, we found that high coverage of ITNs alone had less impact on malaria transmission indices than combining ITNs with IRS, likely due to observed low net use. Reinforcing effective communication for behavioral change in net use and IRS could further reduce malaria transmission.


Assuntos
Anopheles , Inseticidas , Malária , Animais , Humanos , Gana/epidemiologia , Mosquitos Vetores , Controle de Mosquitos/métodos , Malária/epidemiologia , Malária/prevenção & controle , Inseticidas/farmacologia
5.
Pan Afr Med J ; 44: 83, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37193108

RESUMO

The novel coronavirus (COVID-19) pandemic has stretched the medical resources of both developed and developing countries. The global focus on COVID-19 may lead to the neglect of other infectious diseases such as malaria which is still endemic in many African countries. Some similarities in malaria and COVID-19 disease presentations may also lead to late diagnosis of either disease which could complicate the effects. Here, we present two cases of a 6-year-old child and a 17-year-old female who presented to a primary care facility in Ghana with a clinical and microscopy-confirmed diagnosis of severe malaria complicated by thrombocytopenia. As their symptoms worsened with associated respiratory complications, nasopharyngeal samples were taken for real-time polymerase chain reaction (RT-PCR) and tested positive for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Clinicians, policymakers, and public health practitioners should be alert to the variety of presenting symptoms of COVID-19 and its similarity to malaria to mitigate the risk of mortality from either disease.


Assuntos
COVID-19 , Malária , Criança , Feminino , Humanos , Adolescente , COVID-19/complicações , COVID-19/diagnóstico , SARS-CoV-2 , Malária/complicações , Malária/diagnóstico , Saúde Pública , Gana
6.
Malar J ; 22(1): 76, 2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36870966

RESUMO

BACKGROUND: The World Health Organization recommends parasitological confirmation of all suspected malaria cases by microscopy or rapid diagnostic tests (RDTs) before treatment. These conventional tools are widely used for point-of-care diagnosis in spite of their poor sensitivity at low parasite density. Previous studies in Ghana have compared microscopy and RDT using standard 18S rRNA PCR as reference with varying outcomes. However, how these conventional tools compare with ultrasensitive varATS qPCR has not been studied. This study, therefore, sought to investigate the clinical performance of microscopy and RDT assuming highly sensitive varATS qPCR as gold standard. METHODS: 1040 suspected malaria patients were recruited from two primary health care centers in the Ashanti Region of Ghana and tested for malaria by microscopy, RDT, and varATS qPCR. The sensitivity, specificity, and predictive values were assessed using varATS qPCR as gold standard. RESULTS: Parasite prevalence was 17.5%, 24.5%, and 42.1% by microscopy, RDT, and varATS qPCR respectively. Using varATS qPCR as the standard, RDT was more sensitive (55.7% vs 39.3%), equally specific (98.2% vs 98.3%), and reported higher positive (95.7% vs 94.5%) and negative predictive values (75.3% vs 69.0%) than microscopy. Consequently, RDT recorded better diagnostic agreement (kappa = 0.571) with varATS qPCR than microscopy (kappa = 0.409) for clinical detection of malaria. CONCLUSIONS: RDT outperformed microscopy for the diagnosis of Plasmodium falciparum malaria in the study. However, both tests missed over 40% of infections that were detected by varATS qPCR. Novel tools are needed to ensure prompt diagnosis of all clinical malaria cases.


Assuntos
Malária Falciparum , Malária , Humanos , Microscopia , Reação em Cadeia da Polimerase , Gana
7.
Trop Med Infect Dis ; 8(3)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36977181

RESUMO

Reactive case detection (RACD) is the screening of household members and neighbors of index cases reported in passive surveillance. This strategy seeks asymptomatic infections and provides treatment to break transmission without testing or treating the entire population. This review discusses and highlights RACD as a recommended strategy for the detection and elimination of asymptomatic malaria as it pertains in different countries. Relevant studies published between January 2010 and September 2022 were identified mainly through PubMed and Google Scholar. Search terms included "malaria and reactive case detection", "contact tracing", "focal screening", "case investigation", "focal screen and treat". MedCalc Software was used for data analysis, and the findings from the pooled studies were analyzed using a fixed-effect model. Summary outcomes were then presented using forest plots and tables. Fifty-four (54) studies were systematically reviewed. Of these studies, 7 met the eligibility criteria based on risk of malaria infection in individuals living with an index case < 5 years old, 13 met the eligibility criteria based on risk of malaria infection in an index case household member compared with a neighbor of an index case, and 29 met the eligibility criteria based on risk of malaria infection in individuals living with index cases, and were included in the meta-analysis. Individuals living in index case households with an average risk of 2.576 (2.540-2.612) were more at risk of malaria infection and showed pooled results of high variation heterogeneity chi-square = 235.600, (p < 0.0001) I2 = 98.88 [97.87-99.89]. The pooled results showed that neighbors of index cases were 0.352 [0.301-0.412] times more likely to have a malaria infection relative to index case household members, and this result was statistically significant (p < 0.001). The identification and treatment of infectious reservoirs is critical to successful malaria elimination. Evidence to support the clustering of infections in neighborhoods, which necessitates the inclusion of neighboring households as part of the RACD strategy, was presented in this review.

8.
Geohealth ; 7(2): e2022GH000698, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36743738

RESUMO

A new database of the Entomological Inoculation Rate (EIR) was used to directly link the risk of infectious mosquito bites to climate in Sub-Saharan Africa. Applying a statistical mixed model framework to high-quality monthly EIR measurements collected from field campaigns in Sub-Saharan Africa, we analyzed the impact of rainfall and temperature seasonality on EIR seasonality and determined important climate drivers of malaria seasonality across varied climate settings in the region. We observed that seasonal malaria transmission was within a temperature window of 15°C-40°C and was sustained if average temperature was well above 15°C or below 40°C. Monthly maximum rainfall for seasonal malaria transmission did not exceed 600 in west Central Africa, and 400 mm in the Sahel, Guinea Savannah, and East Africa. Based on a multi-regression model approach, rainfall and temperature seasonality were found to be significantly associated with malaria seasonality in all parts of Sub-Saharan Africa except in west Central Africa. Topography was found to have significant influence on which climate variable is an important determinant of malaria seasonality in East Africa. Seasonal malaria transmission onset lags behind rainfall only at markedly seasonal rainfall areas such as Sahel and East Africa; elsewhere, malaria transmission is year-round. High-quality EIR measurements can usefully supplement established metrics for seasonal malaria. The study's outcome is important for the improvement and validation of weather-driven dynamical mathematical malaria models that directly simulate EIR. Our results can contribute to the development of fit-for-purpose weather-driven malaria models to support health decision-making in the fight to control or eliminate malaria in Sub-Saharan Africa.

9.
Arch Microbiol ; 205(2): 74, 2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36707480

RESUMO

Leishmaniasis is a vector-borne disease caused by an intracellular protozoan parasite. The presence of secondary bacterial infections in cutaneous leishmaniasis wounds exacerbate lesion development and could lead to delay in the healing process. This study sought to determine the resistance patterns of bacteria co-infecting cutaneous leishmaniasis wounds from selected communities in the Nkwanta district. Various bacteria were isolated and characterized from exudates obtained from wound swabs collected with sterile cotton tipped applicators. Confirmation of bacterial identity was done using the analytical profile index and the matrix-assisted laser desorption/ionization time of flight mass spectrometry. Antibiotic susceptibility tests were performed using agar disc diffusion method according to the Clinical and Laboratory Standards Institute breakpoint values. A total of eleven (11) secondary bacterial species (spp) were isolated from the 33 wound samples that tested positive for Leishmania kinetoplast DNA, among which Staphylococcus aureus was the most predominant (31%). The pathogenic bacteria that colonized the wounds included Bacillus subtilis (23.8%), Pantoea species (11.9%), Klebsiella pneumoniea (7.1%), Enterobacter cloacae (7.1%), Aeromonas species (4.8%), Serratia marcescens (4.8%), Serratia liquefacien (2.4%), Serratia plymutheca (2.4%), Providencia rettgeri (2.4%) and Cronobacter species (2.4%). Most of the isolates were resistant to beta-lactam antibiotics and the third-generation cephalosporin. Notably, 84.6% of the S. aureus isolates were methicillin and ciprofloxacin resistant whilst 92.3% were resistant to ampicillin. About sixty-nine percent (69.2%) showed intermediate susceptibility to Erythromycin. Additionally, S. plymutheca was resistant to all the test antibiotics. This study suggests colonization of cutaneous leishmaniasis wounds with varied bacterial species that are mostly resistant to beta-lactam group of antibiotics.


Assuntos
Leishmaniose Cutânea , Staphylococcus aureus , Humanos , Gana/epidemiologia , Bactérias/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Testes de Sensibilidade Microbiana , beta-Lactamas , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/epidemiologia
10.
Anal Chem ; 94(41): 14377-14384, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36195476

RESUMO

In this work, we have developed a paper-based microfluidic device capable of remote biofluid collection followed by an analysis of the dried clinical samples using a miniature mass spectrometer. We have evaluated a portable mass spectrometer as a possible surveillance platform by analyzing the clinical malaria samples (whole blood) collected from Ghana. We synthesized pH-sensitive ionic probes and coupled them with monoclonal antibodies specific to the Plasmodium falciparum histidine-rich protein 2 (PfHRP2) malaria antigen. We then used the antibody-ionic probe conjugates in a paper-based immunoassay to capture PfHRP2 antigen from untreated whole blood. After the immunoassay, the bound ionic probes were cleaved, and the released mass tags were analyzed through an on-chip paper spray mass spectrometry strategy. During process optimization, we determined the detection limit for PfHRP2 in untreated human serum to be 0.216 nmol/L when using the miniature mass spectrometer. This sensitivity is comparable to the World Health Organization's suggested threshold of 0.227 nmol/L for PfHRP2, proving that our method will be applicable to diagnose symptomatic malaria infection (≥200 parasites per µL blood). The paper device can be stored at room temperature for at least 25 days without affecting the clinical outcome, with each stored paper chip offering good repeatability and reproducibility (RSD = 4-12%). The stability and sensitivity of the developed paper-based immunoassay platform will allow miniature mass spectrometers to be used for point-of-care malaria detection as well as in large-scale surveillance screening to aid eradication programs.


Assuntos
Malária Falciparum , Malária , Anticorpos Monoclonais , Antígenos de Protozoários , Histidina , Humanos , Imunoensaio/métodos , Malária/diagnóstico , Malária Falciparum/diagnóstico , Malária Falciparum/parasitologia , Espectrometria de Massas , Plasmodium falciparum/química , Proteínas de Protozoários , Reprodutibilidade dos Testes
11.
Front Microbiol ; 13: 1011049, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246252

RESUMO

Monkeypox is an emerging zoonotic disease caused by the monkeypox virus, which is an infectious agent belonging to the genus Orthopoxvirus. Currently, commencing from the end of April 2022, an outbreak of monkeypox is ongoing, with more than 43,000 cases reported as of 23 August 2022, involving 99 countries and territories across all the six World Health Organization (WHO) regions. On 23 July 2022, the Director-General of the WHO declared monkeypox a global public health emergency of international concern (PHEIC), since the outbreak represents an extraordinary, unusual, and unexpected event that poses a significant risk for international spread, requiring an immediate, coordinated international response. However, the real magnitude of the burden of disease could be masked by failures in ascertainment and under-detection. As such, underestimation affects the efficiency and reliability of surveillance and notification systems and compromises the possibility of making informed and evidence-based policy decisions in terms of the adoption and implementation of ad hoc adequate preventive measures. In this review, synthesizing 53 papers, we summarize the determinants of the underestimation of sexually transmitted diseases, in general, and, in particular, monkeypox, in terms of all their various components and dimensions (under-ascertainment, underreporting, under-detection, under-diagnosis, misdiagnosis/misclassification, and under-notification).

12.
R Soc Open Sci ; 9(6): 220058, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35719886

RESUMO

Nanomedicine strategies were first adapted and successfully translated to clinical application for diseases, such as cancer and diabetes. These strategies would no doubt benefit unmet diseases needs as in the case of leishmaniasis. The latter causes skin sores in the cutaneous form and affects internal organs in the visceral form. Treatment of cutaneous leishmaniasis (CL) aims at accelerating wound healing, reducing scarring and cosmetic morbidity, preventing parasite transmission and relapse. Unfortunately, available treatments show only suboptimal effectiveness and none of them were designed specifically for this disease condition. Tissue regeneration using nano-based devices coupled with drug delivery are currently being used in clinic to address diabetic wounds. Thus, in this review, we analyse the current treatment options and attempt to critically analyse the use of nanomedicine-based strategies to address CL wounds in view of achieving scarless wound healing, targeting secondary bacterial infection and lowering drug toxicity.

13.
Elife ; 112022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35762586

RESUMO

Most rapid diagnostic tests for Plasmodium falciparum malaria target the Histidine-Rich Proteins 2 and 3 (HRP2 and HRP3). Deletions of the hrp2 and hrp3 genes result in false-negative tests and are a threat for malaria control. A novel assay for molecular surveillance of hrp2/hrp3 deletions was developed based on droplet digital PCR (ddPCR). The assay quantifies hrp2, hrp3, and a control gene with very high accuracy. The theoretical limit of detection was 0.33 parasites/µl. The deletion was reliably detected in mixed infections with wild-type and hrp2-deleted parasites at a density of >100 parasites/reaction. For a side-by-side comparison with the conventional nested PCR (nPCR) assay, 248 samples were screened in triplicate by ddPCR and nPCR. No deletions were observed by ddPCR, while by nPCR hrp2 deletion was observed in 8% of samples. The ddPCR assay was applied to screen 830 samples from Kenya, Zanzibar/Tanzania, Ghana, Ethiopia, Brazil, and Ecuador. Pronounced differences in the prevalence of deletions were observed among sites, with more hrp3 than hrp2 deletions. In conclusion, the novel ddPCR assay minimizes the risk of false-negative results (i.e., hrp2 deletion observed when the sample is wild type), increases sensitivity, and greatly reduces the number of reactions that need to be run.


Assuntos
Malária Falciparum , Malária , Antígenos de Protozoários/genética , Testes Diagnósticos de Rotina/métodos , Deleção de Genes , Humanos , Malária/genética , Malária Falciparum/epidemiologia , Plasmodium falciparum/genética , Reação em Cadeia da Polimerase , Proteínas de Protozoários/genética
14.
Infect Dis Model ; 7(2): 33-44, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35388371

RESUMO

In Burundi, malaria infection has been increasing in the last decade despite efforts to increase access to health services, and several intervention programs. The use of heterogeneous data can help to build predictive models of malaria cases. We built predictive frameworks: the generalized linear model (GLM), and artificial neural network (ANN), to predict malaria cases in four sub-groups and the overall general population. Descriptive results showed that more than half of malaria infections are observed in pregnant women and children under 5 years, with high burden to children between 12 and 59 months. Modelling results showed that, ANN model performed better in predicting total cases compared to GLM. Both model frameworks showed that education rates and Insecticide Treated Bed Nets (ITNs) had decreasing effects on malaria cases, some other variables had an increasing effect. Thus, malaria control and prevention interventions program are encouraged to understand those variables, and take appropriate measures such as providing ITNs, sensitization in schools and the communities, starting within high dense communities, among others. Early prediction of cases can provide timely information needed to be proactive for intervention strategies, and it can help to mitigate the epidemics and reduce its impact on populations and the economy.

15.
Sci Afr ; 15: e01083, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34957351

RESUMO

The novel coronavirus disease 2019 (COVID-19) is one of the biggest public health crises globally. Although Africa did not display the worst-case scenario compared to other continents, fears were still at its peak since Africa was already suffering from a heavy load of other life-threatening infectious diseases such as HIV/AIDS and malaria. Other factors that were anticipated to complicate Africa's outcomes include the lack of resources for diagnosis and contact tracing along with the low capacity of specialized management facilities per capita. The current review aims at assessing and generating discussions on the realities, and pros and cons of the WHO COVID-19 interim guidance 2020.5 considering the known peculiarities of the African continent. A comprehensive evaluation was done for COVID-19-related data published across PubMed and Google Scholar (date of the last search: August 17, 2020) with emphasis on clinical management and psychosocial aspects. Predefined filters were then applied in data screening as detailed in the methods. Specifically, we interrogated the WHO 2020.5 guideline viz-a-viz health priority and health financing in Africa, COVID-19 case contact tracing and risk assessment, clinical management of COVID-19 cases as well as strategies for tackling stigmatization and psychosocial challenges encountered by COVID-19 survivors. The outcomes of this work provide links between these vital sub-themes which may impact the containment and management of COVID-19 cases in Africa in the long-term. The chief recommendation of the current study is the necessity of prudent filtration of the global findings along with regional modelling of the global care guidelines for acting properly in response to this health threat on the regional level without exposing our populations to further unnecessary adversities.

16.
PLOS Glob Public Health ; 2(7): e0000828, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36962426

RESUMO

Rapid diagnostic tests (RDTs) are a key tool for the diagnosis of malaria infections among clinical and subclinical individuals. Low-density infections, and deletions of the P. falciparum hrp2/3 genes (encoding the HRP2 and HRP3 proteins detected by many RDTs) present challenges for RDT-based diagnosis. The novel Rapigen Biocredit three-band Plasmodium falciparum HRP2/LDH RDT was evaluated among 444 clinical and 468 subclinical individuals in a high transmission setting in Burundi. Results were compared to the AccessBio CareStart HRP2 RDT, and qPCR with a sensitivity of <0.3 parasites/µL blood. Sensitivity compared to qPCR among clinical patients for the Biocredit RDT was 79.9% (250/313, either of HRP2/LDH positive), compared to 73.2% (229/313) for CareStart (P = 0.048). Specificity of the Biocredit was 82.4% compared to 96.2% for CareStart. Among subclinical infections, sensitivity was 72.3% (162/224) compared to 58.5% (131/224) for CareStart (P = 0.003), and reached 88.3% (53/60) in children <15 years. Specificity was 84.4% for the Biocredit and 93.4% for the CareStart RDT. No (0/362) hrp2 and 2/366 hrp3 deletions were observed. In conclusion, the novel RDT showed improved sensitivity for the diagnosis of P. falciparum.

17.
Pan Afr Med J ; 39: 89, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34466191

RESUMO

Coronavirus disease 2019 (COVID-19), a severe acute respiratory syndrome caused by SARS-CoV-2 was declared a global pandemic by the World Health Organization (WHO) in March 2020. As of 21st April 2021, the disease had affected more than 143 million people with more than 3 million deaths worldwide. Urgent effective strategies are required to control the scourge of the pandemic. Rapid sample collection and effective testing of appropriate specimens from patients meeting the suspect case definition for COVID-19 is a priority for clinical management and outbreak control. The WHO recommends that suspected cases be screened for SARS-CoV-2 virus with nucleic acid amplification tests such as real-time Reverse Transcription-Polymerase Chain Reaction (rRT-PCR). Other COVID-19 screening techniques such as serological and antigen tests have been developed and are currently being used for testing at ports of entry and for general surveillance of population exposure in some countries. However, there are limited testing options, equipment, and trained personnel in many African countries. Previously, positive patients have been screened more than twice to determine viral clearance prior to discharge after treatment. In a new policy directive, the WHO now recommends direct discharge after treatment of all positive cases without repeated testing. In this review, we discuss COVID-19 testing capacity, various diagnostic methods, test accuracy, as well as logistical challenges in Africa with respect to the WHO early discharge policy.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , Guias de Prática Clínica como Assunto , África , Humanos , Programas de Rastreamento/métodos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Manejo de Espécimes , Organização Mundial da Saúde
18.
Front Med (Lausanne) ; 8: 648660, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34239886

RESUMO

The evolving nature of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has necessitated periodic revisions of COVID-19 patient treatment and discharge guidelines. Since the identification of the first COVID-19 cases in November 2019, the World Health Organization (WHO) has played a crucial role in tackling the country-level pandemic preparedness and patient management protocols. Among others, the WHO provided a guideline on the clinical management of COVID-19 patients according to which patients can be released from isolation centers on the 10th day following clinical symptom manifestation, with a minimum of 72 additional hours following the resolution of symptoms. However, emerging direct evidence indicating the possibility of viral shedding 14 days after the onset of symptoms called for evaluation of the current WHO discharge recommendations. In this review article, we carried out comprehensive literature analysis of viral shedding with specific focus on the duration of viral shedding and infectivity in asymptomatic and symptomatic (mild, moderate, and severe forms) COVID-19 patients. Our literature search indicates that even though, there are specific instances where the current protocols may not be applicable ( such as in immune-compromised patients there is no strong evidence to contradict the current WHO discharge criteria.

19.
AAS Open Res ; 2: 27, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32704620

RESUMO

Background: We aimed at investigating the impact of malaria on the haematological parameters of residents from different demographic settlements in the Ashanti Region of Ghana. Malaria parasites trigger changes in certain haematological parameters, which may result in a number of clinical manifestations. Differences in demographic settlements, such as rural, peri-urban and urban settlements may also influence these changes, but this has not been extensively studied in Ghana. Methods: We conducted a hospital-based, cross-sectional study from January to December 2018 in three different settlements. A total of 598 participants were recruited. Blood smears were examined to detect and quantify malaria parasitaemia, while haematological parameters were measured using a haematology analyser. Results: Participants from the rural settlement had the highest malaria prevalence (21.3%) compared to the urban (11.8%) and peri-urban areas (13.3%); however, the peri-urban area had the highest median parasite density (568; IQR=190.0-1312.0). Age was significantly associated with the odds of malaria positivity (OR: 0.97; CI:0.96 - 0.99). When haematological parameters of the malaria-infected study participants were compared to the parameters of uninfected participants, red blood cell count (p=0.017), haemoglobin (p=0.0165), haematocrit (p=0.0015), mean corpuscular volume (p=0.0014), plateletcrit (p<0.0001) and platelet count (p<0.0001) were all significantly lower in the malaria infected group. In addition to age, haemoglobin and plateletcrit levels were also inversely correlated with the odds of testing positive for malaria, suggesting that children who were anaemic and/or thrombocytopaenic were likely to be infected. After fitting the data to a logistic regression model comprising the three variables, the model correctly categorised 78% of uninfected study participants, but only 50% of the malaria-positive participants. Conclusions: Study participants who were positive for malaria were younger and had low haemoglobin and plateletcrit levels compared to uninfected individuals. Further studies are needed to more precisely elucidate the relationship between malaria infection,demographic and haematological parameters.

20.
AAS Open Res ; 2: 166, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32734139

RESUMO

Background: Toxoplasma gondii is an obligate, intracellular, apicomplexan parasite that causes toxoplasmosis. Although the global prevalence of toxoplasmosis has been estimated to be approximately 30%, there is limited seroprevalence data in Ghana, with a dearth of information on the impact of T. gondii on haematological parameters in exposed persons. Methods: Questionnaires were administered to 300 consenting individuals to obtain demographic information and assessment of their risk of exposure to T. gondii. Using anti- T. gondii IgG/IgM combo test kits, seropositivity to parasite-specific IgG and/or IgM was determined. A haematological analyser was used to measure haematological parameters. Results: The participants included 58 males and 242 females, and ranged in age from 6 months to 84 years, with a median age of 27 years. There was an overall seroprevalence of 50.3% (n=151), with 49.7% (n=149) of the study participants seropositive for IgG and 1% (n=3) testing positive for IgM. Furthermore, the observed seroprevalence among pregnant women was 56.4% (n=62). With regards to the different communities in which the hospitals were located, a seroprevalence of 55.6% was observed in the rural community, 50.6% in the peri-urban community and 47.1% in the urban community. The study identified cat ownership, contact with cat litter [RR (95% CI: 1.76 (1.23-2.53), 1.66 (1.03-2.67), 1.25(1.00-1.57)] and age (p<0.001) as risk factors for infection. Analyses of haematological data also revealed significant differences between the red blood cell counts (p=0.038) and mean corpuscular volumes (p=0.0007) of seropositive and seronegative study participants. Conclusions: About half of the study population, including a significant number of women of reproductive age carried antibodies against T. gondii, raising questions about the risk of congenital toxoplasmosis, as well as possible links to anaemia. We, therefore, recommend that screening for Toxoplasma gondii be included in the routine screening of pregnant women seeking antenatal care.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA