Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 310
Filtrar
1.
Adv Drug Deliv Rev ; 211: 115347, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38844005

RESUMO

Extracellular Matrix (ECM) scaffolds and biomaterials have been widely used for decades across a variety of diverse clinical applications and have been implanted in millions of patients worldwide. ECM-based biomaterials have been especially successful in soft tissue repair applications but their utility in other clinical applications such as for regeneration of bone or neural tissue is less well understood. The beneficial healing outcome with the use of ECM biomaterials is the result of their biocompatibility, their biophysical properties and their ability to modify cell behavior after injury. As a consequence of successful clinical outcomes, there has been motivation for the development of next-generation formulations of ECM materials ranging from hydrogels, bioinks, powders, to whole organ or tissue scaffolds. The continued development of novel ECM formulations as well as active research interest in these materials ensures a wealth of possibilities for future clinical translation and innovation in regenerative medicine. The clinical translation of next generation formulations ECM scaffolds faces predictable challenges such as manufacturing, manageable regulatory pathways, surgical implantation, and the cost required to address these challenges. The current status of ECM-based biomaterials, including clinical translation, novel formulations and therapies currently under development, and the challenges that limit clinical translation of ECM biomaterials are reviewed herein.

2.
Plast Reconstr Surg Glob Open ; 12(5): e5821, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38798934

RESUMO

Background: Few series report on using fat grafting as the primary form of breast reconstruction. A 9-year experience with absorbable biosynthetic scaffolds, used in place of silicone implants, for breast reconstruction is reviewed. Methods: A clinical quality improvement approach was used to evaluate real-world data on a single plastic surgeon's experience treating breast reconstruction patients over a 7-year period. Results: Fifty-three patients had 74 breasts reconstructed, (following 51 therapeutic mastectomies and 23 prophylactic). Five of the 51 breasts (9.80 %) developed a local recurrence (mean follow-up of 4.5-5.5 years). This compared favorably with the practice's previous 6 years of silicone reconstructions. The most common complications were benign fat necrosis and oil cysts. More than 100 radiologic examinations were performed without interference by the absorbable implants. By 12-18 months post implantation, very little immune response was seen on histologic examinations of the biosynthetic scaffold constructs. Mature collagen and robust vascularity characterized the "mesh zone," whereas regenerated adipose tissue was seen in between and on top of the folded sheets of the implants. The average number of fat graft sessions in immediate reconstructions was 2.3, with a mean total fat graft volume of 551 mL, to restore an average mastectomy defect volume of 307 mL. Aesthetic outcomes were much better in the immediate reconstruction of nipple-sparing mastectomy group, which saw 68% achieve an A/B grade; 19%, C grade; and 13%, D/F on subjective grading. Conclusion: This composite strategy, using biosynthetic scaffold and autologous fat grafting, yielded outcomes equivalent to flap reconstructions with the ease of implants.

3.
bioRxiv ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38746341

RESUMO

Extracellular vesicles (EVs) are particles secreted by all cells that carry bioactive cargo and facilitate intercellular communication with roles in normal physiology and disease pathogenesis. EVs have tremendous diagnostic and therapeutic potential and accordingly, the EV field has grown exponentially in recent years. Bulk assays lack the sensitivity to detect rare EV subsets relevant to disease, and while single EV analysis techniques remedy this, they are undermined by complicated detection schemes often coupled with prohibitive instrumentation. To address these issues, we propose a microfluidic technique for EV characterization called 'catch and display for liquid biopsy (CAD-LB)'. CAD-LB rapidly captures fluorescently labeled EVs in the similarly-sized pores of an ultrathin silicon nitride membrane. Minimally processed sample is introduced via pipette injection into a simple microfluidic device which is directly imaged using fluorescence microscopy for a rapid assessment of EV number and biomarker colocalization. In this work, nanoparticles were first used to define the accuracy and dynamic range for counting and colocalization by CAD-LB. Following this, the same assessments were made for purified EVs and for unpurified EVs in plasma. Biomarker detection was validated using CD9 in which Western blot analysis confirmed that CAD-LB faithfully recapitulated differing expression levels among samples. We further verified that CAD-LB captured the known increase in EV-associated ICAM-1 following the cytokine stimulation of endothelial cells. Finally, to demonstrate CAD-LB's clinical potential, we show that EV biomarkers indicative of immunotherapy responsiveness are successfully detected in the plasma of bladder cancer patients undergoing immune checkpoint blockade.

5.
Sci Rep ; 14(1): 5006, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438404

RESUMO

A combination of improved body armor, medical transportation, and treatment has led to the increased survival of warfighters from combat extremity injuries predominantly caused by blasts in modern conflicts. Despite advances, a high rate of complications such as wound infections, wound failure, amputations, and a decreased quality of life exist. To study the molecular underpinnings of wound failure, wound tissue biopsies from combat extremity injuries had RNA extracted and sequenced. Wounds were classified by colonization (colonized vs. non-colonized) and outcome (healed vs. failed) status. Differences in gene expression were investigated between timepoints at a gene level, and longitudinally by multi-gene networks, inferred proportions of immune cells, and expression of healing-related functions. Differences between wound outcomes in colonized wounds were more apparent than in non-colonized wounds. Colonized/healed wounds appeared able to mount an adaptive immune response to infection and progress beyond the inflammatory stage of healing, while colonized/failed wounds did not. Although, both colonized and non-colonized failed wounds showed increasing inferred immune and inflammatory programs, non-colonized/failed wounds progressed beyond the inflammatory stage, suggesting different mechanisms of failure dependent on colonization status. Overall, these data reveal gene expression profile differences in healing wounds that may be utilized to improve clinical treatment paradigms.


Assuntos
Qualidade de Vida , Ferida Cirúrgica , Humanos , Amputação Cirúrgica , Redes Reguladoras de Genes , Extremidades
6.
NAR Genom Bioinform ; 6(1): lqae019, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38344273

RESUMO

The correlation between messenger RNA (mRNA) and protein abundances has long been debated. RNA sequencing (RNA-seq), a high-throughput, commonly used method for analyzing transcriptional dynamics, leaves questions about whether we can translate RNA-seq-identified gene signatures directly to protein changes. In this study, we utilized a set of 17 widely assessed immune and wound healing mediators in the context of canine volumetric muscle loss to investigate the correlation of mRNA and protein abundances. Our data reveal an overall agreement between mRNA and protein levels on these 17 mediators when examining samples from the same experimental condition (e.g. the same biopsy). However, we observed a lack of correlation between mRNA and protein levels for individual genes under different conditions, underscoring the challenges in converting transcriptional changes into protein changes. To address this discrepancy, we developed a machine learning model to predict protein abundances from RNA-seq data, achieving high accuracy. Our approach also effectively corrected multiple extreme outliers measured by antibody-based protein assays. Additionally, this model has the potential to detect post-translational modification events, as shown by accurately estimating activated transforming growth factor ß1 levels. This study presents a promising approach for converting RNA-seq data into protein abundance and its biological significance.

7.
Acta Biomater ; 174: 104-115, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38081445

RESUMO

Matrix metalloproteinases (MMPs) cause proteolysis of extracellular matrix (ECM) in tissues affected by stroke. However, little is known about how MMPs degrade ECM hydrogels implanted into stroke cavities to regenerate lost tissue. To establish a structure-function relationship between different doses of individual MMPs and isolate their effects in a controlled setting, an in vitro degradation assay quantified retained urinary bladder matrix (UBM) hydrogel mass as a measure of degradation across time. A rheological characterization indicated that lower ECM concentrations (<4 mg/mL) did not cure completely at 37 °C and had a high fraction of mobile proteins that were easily washed-out. Hydrolysis by dH2O caused a steady 2 % daily decrease in hydrogel mass over 14 days. An acceleration of degradation to 6 % occurred with phosphate buffered saline and artificial cerebrospinal fluid. MMPs induced a dose-dependent increase and within 14 days almost completely (>95 %) degraded the hydrogel. MMP-9 exerted the most significant biodegradation, compared to MMP-3 and -2. To model the in vivo exposure of hydrogel to MMPs, mixtures of MMP-2, -3, and -9, present in the cavity at 14-, 28-, or 90-days post-stroke, revealed that 14- and 28-days mixtures achieved an equivalent biodegradation, but a 90-days mixture exhibited a slower degradation. These results revealed that hydrolysis, in addition to proteolysis, exerts a major influence on the degradation of hydrogels. Understanding the mechanisms of ECM hydrogel biodegradation is essential to determine the therapeutic window for bioscaffold implantation after a stroke, and they are also key to determine optimal degradation kinetics to support tissue regeneration. STATEMENT OF SIGNIFICANCE: After implantation into a stroke cavity, extracellular matrix (ECM) hydrogel promotes tissue regeneration through the degradation of the bioscaffold. However, the process of degradation of an ECM hydrogel remains poorly understood. We here demonstrated in vitro under highly controlled conditions that hydrogel degradation is very dependent on its protein concentration. Lower protein concentration hydrogels were weaker in rheological measurements and particularly susceptible to hydrolysis. The proteolytic degradation of tissue ECM after a stroke is caused by matrix metalloproteinases (MMPs). A dose-dependent MMP-driven biodegradation of ECM hydrogel exceeded the effects of hydrolysis. These results highlight the importance of in vitro testing of putative causes of degradation to gain a better understanding of how these factors affect in vivo biodegradation.


Assuntos
Hidrogéis , Acidente Vascular Cerebral , Humanos , Hidrogéis/farmacologia , Hidrogéis/metabolismo , Matriz Extracelular/metabolismo , Acidente Vascular Cerebral/terapia , Proteólise , Metaloproteinases da Matriz/metabolismo
8.
Biomater Adv ; 154: 213656, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37844416

RESUMO

Bacterial infections represent a formidable challenge, often leaving behind significant bone defects post-debridement and necessitating prolonged antibiotic treatments. The rise of antibiotic-resistant bacterial strains further complicates infection management. Bioactive glass nanoparticles have been presented as a promising substitute for bone defects and as carriers for therapeutic agents against microorganisms. Achieving consistent incorporation of ions into BGNs has proven challenging and restricted to a maximum ion concentration, especially when reducing the particle size. This study presents a notable achievement in the synthesis of 10 nm-sized Ag-doped bioactive glass nanoparticles (Ag-BGNs) using a modified yet straightforward Stöber method. The successful incorporation of essential elements, including P, Ca, Al, and Ag, into the glass structure at the intended concentrations (i.e., CaO wt% above 20 %) was confirmed by EDS, signifying a significant advancement in nanoscale biomaterial engineering. While exhibiting a spherical morphology and moderate dispersity, these nanoparticles tend to form submicron-sized aggregates outside of a solution state. The antibacterial effectiveness against MRSA was established across various experimental conditions, with Ag-BGNs effectively sterilizing planktonic bacteria without the need for antibiotics. Remarkably, when combined with oxacillin or fosfomycin, Ag-BGNs demonstrated a potent synergistic effect, restoring antibacterial capabilities against MRSA strains resistant to these antibiotics when used alone. Ag-BGNs exhibited potential in promoting human mesenchymal stromal cell proliferation, inducing the upregulation of osteoblast gene markers, and significantly contributing to bone regeneration in mice. This innovative synthesis protocol holds substantial promise for the development of biomaterials dedicated to the regeneration of infected tissue.


Assuntos
Nanopartículas , Prata , Humanos , Camundongos , Animais , Prata/farmacologia , Nanopartículas/uso terapêutico , Nanopartículas/química , Regeneração Óssea , Cicatrização , Materiais Biocompatíveis/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Bactérias
9.
Biomed Phys Eng Express ; 9(6)2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37725946

RESUMO

Biologic scaffolds are extensively used in various clinical applications such as musculotendinous reconstruction, hernia repair or wound healing. Biologic scaffolds used in these applications vary in species, breed and tissue of origin, and other variables that affect their properties. Decellularization and sterilization processes also determine the characteristics of these scaffolds. The goal of the present study is to compare the composition and mechanical properties of decellularized porcine placental scaffolds from three different porcine breeds: Landrace, York and Duroc. Placental extracellular matrix (ECM) scaffolds from the three porcine breeds preserved the amnion/chorion ECM structure and the basement membrane markers laminin and collagen type IV. ECM placental scaffolds showed similar contents of collagen, elastin and lipids, and minimal differences in glycosaminoglycans content. Mechanical properties from the three breeds ECM placental scaffolds were also similar and stable for 24 months. While this study serves as preliminary characterization of porcine ECM scaffolds, future studies will determine their compatibility and suitability for tissue engineering applications.


Assuntos
Produtos Biológicos , Alicerces Teciduais , Gravidez , Suínos , Feminino , Animais , Alicerces Teciduais/química , Placenta , Matriz Extracelular , Engenharia Tecidual , Produtos Biológicos/análise
10.
mBio ; 14(5): e0086323, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37772820

RESUMO

IMPORTANCE: Miscommunication of antiviral and antibacterial immune signals drives worsened morbidity and mortality during respiratory viral-bacterial coinfections. Extracellular vesicles (EVs) are a form of intercellular communication with broad implications during infection, and here we show that epithelium-derived EVs released during the antiviral response impair the antibacterial activity of macrophages, an innate immune cell crucial for bacterial control in the airway. Macrophages exposed to antiviral EVs display reduced clearance of Staphylococcus aureus as well as altered inflammatory signaling and anti-inflammatory metabolic reprogramming, thus revealing EVs as a source of dysregulated epithelium-macrophage crosstalk during coinfection. As effective epithelium-macrophage communication is critical in mounting an appropriate immune response, this novel observation of epithelium-macrophage crosstalk shaping macrophage metabolism and antimicrobial function provides exciting new insight and improves our understanding of immune dysfunction during respiratory coinfections.


Assuntos
Coinfecção , Vesículas Extracelulares , Infecções Estafilocócicas , Humanos , Coinfecção/metabolismo , Macrófagos , Infecções Estafilocócicas/metabolismo , Antibacterianos/metabolismo , Antivirais/metabolismo
11.
J Surg Res ; 291: 683-690, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37562230

RESUMO

INTRODUCTION: The clinical characterization of the functional status of active wounds in terms of their driving cellular and molecular biology remains a considerable challenge that currently requires excision via a tissue biopsy. In this pilot study, we use convolutional Siamese neural network (SNN) architecture to predict the functional state of a wound using digital photographs of wounds in a canine model of volumetric muscle loss (VML). METHODS: Digital images of VML injuries and tissue biopsies were obtained in a standardized fashion from an established canine model of VML. Gene expression profiles for each biopsy site were obtained using RNA sequencing. These profiles were converted to functional profiles by a manual review of validated gene ontology databases in which we determined a hierarchical representation of gene functions based on functional specificity. An SNN was trained to regress functional profile expression values, informed by an image segment showing the surface of a small tissue biopsy. RESULTS: The SNN was able to predict the functional expression of a range of functions based with error ranging from ∼5% to ∼30%, with functions that are most closely associated with the early state of wound healing to be those best-predicted. CONCLUSIONS: These initial results suggest promise for further research regarding this novel use of machine learning regression on medical images. The regression of functional profiles, as opposed to specific genes, both addresses the challenge of genetic redundancy and gives a deeper insight into the mechanistic configuration of a region of tissue in wounds.


Assuntos
Inteligência Artificial , Cicatrização , Animais , Cães , Projetos Piloto , Redes Neurais de Computação , Biópsia , Músculo Esquelético/patologia
12.
Adv Healthc Mater ; 12(29): e2301335, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37499214

RESUMO

Reanimating facial structures following paralysis and muscle loss is a surgical objective that would benefit from improved options for harvesting appropriately sized muscle flaps. The objective of this study is to apply electrohydrodynamic processing to generate a cellularized, elastic, biocomposite scaffold that could develop and mature as muscle in a prepared donor site in vivo, and then be transferred as a thin muscle flap with a vascular and neural pedicle. First, an effective extracellular matrix (ECM) gel type is selected for the biocomposite scaffold from three types of ECM combined with poly(ester urethane)urea microfibers and evaluated in rat abdominal wall defects. Next, two types of precursor cells (muscle-derived and adipose-derived) are compared in constructs placed in rat hind limb defects for muscle regeneration capacity. Finally, with a construct made from dermal ECM and muscle-derived stem cells, protoflaps are implanted in one hindlimb for development and then microsurgically transferred as a free flap to the contralateral limb where stimulated muscle function is confirmed. This construct generation and in vivo incubation procedure may allow the generation of small-scale muscle flaps appropriate for transfer to the face, offering a new strategy for facial reanimation.


Assuntos
Músculos , Retalhos Cirúrgicos , Ratos , Animais , Retalhos Cirúrgicos/irrigação sanguínea , Retalhos Cirúrgicos/inervação , Matriz Extracelular
13.
Sci Adv ; 9(20): eadf9016, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37205761

RESUMO

Cytokine storm describes a life-threatening, systemic inflammatory syndrome characterized by elevated levels of proinflammatory cytokines and immune cell hyperactivation associated with multi-organ dysfunction. Matrix-bound nanovesicles (MBV) are a subclass of extracellular vesicle shown to down-regulate proinflammatory immune responses. The objective of this study was to assess the efficacy of MBV in mediating influenza-induced acute respiratory distress syndrome and cytokine storm in a murine model. Intravenous administration of MBV decreased influenza-mediated total lung inflammatory cell density, proinflammatory macrophage frequencies, and proinflammatory cytokines at 7 and 21 days following viral inoculation. MBV decreased long-lasting alveolitis and the proportion of lung undergoing inflammatory tissue repair at day 21. MBV increased the proportion of activated anti-viral CD4+ and CD8+ T cells at day 7 and memory-like CD62L+ CD44+, CD4+, and CD8+ T cells at day 21. These results show immunomodulatory properties of MBV that may benefit the treatment of viral-mediated pulmonary inflammation with applicability to other viral diseases such as SARS-CoV-2.


Assuntos
COVID-19 , Influenza Humana , Camundongos , Animais , Humanos , Influenza Humana/tratamento farmacológico , SARS-CoV-2 , Síndrome da Liberação de Citocina , Linfócitos T CD8-Positivos , Inflamação/tratamento farmacológico , Citocinas , Imunidade
14.
Biomater Adv ; 145: 213223, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36502549

RESUMO

Biomaterials composed of silk fibroin from both mulberry and non-mulberry silkworm varieties have been investigated for their utility in tissue engineering and drug delivery, but these studies have largely excluded any evaluation of host immune response. The present study compares the macrophage activation response towards mulberry (Bombyx mori, BM) and non-mulberry (Antheraea assamensis, AA) silk types, individually and as a blend (BA) in a partial thickness rat abdominal wall defect model and in vitro primary murine bone marrow-derived macrophage (BMDM) assay. Biologic materials composed of liver extracellular matrix (LECM) and small intestinal submucosa (SIS) ECM that are recognized for constructive tissue remodeling, and polypropylene mesh that is associated with pro-inflammatory macrophage phenotype activation are used as controls in the animal model. The AA silk graft shows a host response similar to SIS with few foreign body multinucleate giant cells, vascularization, high CD206 expression, and high M2-like: M1-like macrophage phenotype ratio. Exposure to AA silk degradation products in vitro induces a higher arginase: iNOS ratio in both naive BMDM and pro-inflammatory activated BMDM; and higher Fizz1: iNOS ratio in pro-inflammatory activated BMDM. These data suggest that the AA silk supports a pro-remodeling macrophage response with potential therapeutic applications.


Assuntos
Bombyx , Fibroínas , Mariposas , Animais , Camundongos , Ratos , Bombyx/metabolismo , Ativação de Macrófagos , Seda/metabolismo , Mariposas/metabolismo
15.
Acta Biomater ; 155: 113-122, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36423817

RESUMO

Matrix-bound nanovesicles (MBV) are a distinct subtype of extracellular vesicles that are firmly embedded within biomaterials composed of extracellular matrix (ECM). MBV both store and transport a diverse, tissue specific portfolio of signaling molecules including proteins, miRNAs, and bioactive lipids. MBV function as a key mediator in ECM-mediated control of the local tissue microenvironment. One of the most important mechanisms by which MBV in ECM bioscaffolds support constructive tissue remodeling following injury is immunomodulation and, specifically, the promotion of an anti-inflammatory, pro-remodeling immune cell activation state. Recent in vivo studies have shown that isolated MBV have therapeutic efficacy in rodent models of both retinal damage and rheumatoid arthritis through the targeted immunomodulation of pro-inflammatory macrophages towards an anti-inflammatory activation state. While these results show the therapeutic potential of MBV administered independent of the rest of the ECM, the in vitro and in vivo safety and biodistribution profile of MBV remain uncharacterized. The purpose of the present study was to thoroughly characterize the pre-clinical safety profile of MBV through a combination of in vitro cytotoxicity and MBV uptake studies and in vivo toxicity, immunotoxicity, and imaging studies. The results showed that MBV isolated from porcine urinary bladder are well-tolerated and are not cytotoxic in cell culture, are non-toxic to the whole organism, and are not immunosuppressive compared to the potent immunosuppressive drug cyclophosphamide. Furthermore, this safety profile was sustained across a wide range of MBV doses. STATEMENT OF SIGNIFICANCE: Matrix-bound nanovesicles (MBV) are a distinct subtype of bioactive extracellular vesicles that are embedded within biomaterials composed of extracellular matrix (ECM). Recent studies have shown therapeutic efficacy of MBV in models of both retinal damage and rheumatoid arthritis through the targeted immunomodulation of pro-inflammatory macrophages towards an anti-inflammatory activation state. While these results show the therapeutic potential of MBV, the in vitro and in vivo biocompatibility and biodistribution profile of MBV remain uncharacterized. The results of the present study showed that MBV are a well-tolerated ECM-derived therapy that are not cytotoxic in cell culture, are non-toxic to the whole organism, and are not immunosuppressive. Collectively, these data highlight the translational feasibility of MBV therapeutics across a wide variety of clinical applications.


Assuntos
Artrite Reumatoide , Macrófagos , Suínos , Animais , Distribuição Tecidual , Macrófagos/metabolismo , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/metabolismo , Matriz Extracelular/metabolismo , Anti-Inflamatórios
16.
J Surg Res ; 282: 210-224, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36327703

RESUMO

INTRODUCTION: Powder hemostats are valuable adjuncts to minimize intraoperative and postoperative complications. In addition to promotion of rapid coagulation, resorption, and biocompatibility are desirable attributes. Plant starch-based polysaccharide hemostat powders are effective and widely used hemostatic agents, however their source and/or processing can affect characteristics such as in vivo degradability. For example, Arista is a purified/hydrolyzed starch powder that is rapidly resorbed in vivo; whereas PerClot shows slow resorption and preservation of a crystalline form. MATERIALS AND METHODS: In the present study, we compared the cellular response to the hemostatic agents PerClot and Arista both in vitro and in vivo, and used potato starch and urinary bladder extracellular matrix (UBM-ECM) as high crystallinity/slowly resorbable and prohealing controls, respectively. RESULTS: All test articles and their degradation products were cytocompatible in vitro as measured by cell viability and metabolic activity of bone-marrow macrophages. PerClot induced a stronger proinflammatory, M1-like macrophage response in vitro (P < 0.001) than Arista, likely due to differences in source composition. Histologic examination of the in vivo surgical site showed the almost complete degradation of Arista after 12 h (day 0), whereas both PerClot and potato starch were still present at 28 d with crystals identifiable with polarized light microscopy and periodic acid Schiff (PAS) staining. Macrophage phenotype in vivo showed no differences between PerClot and Arista. Collagen deposition and mononuclear cell accumulation consistent with an early foreign body response were present around PerClot and potato starch crystals, whereas no such cell or connective tissue deposition was noted at the site of Arista or UBM-ECM placement.


Assuntos
Hemostasia Cirúrgica , Hemostáticos , Pós , Amido , Imunidade
17.
Adv Healthc Mater ; 11(24): e2200866, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36063047

RESUMO

Soft tissue injuries such as volumetric muscle loss (VML) are often too large to heal normally on their own, resulting in scar formation and functional deficits. Decellularized extracellular matrix (dECM) scaffolds placed into these wounds have shown the ability to modulate the immune response and drive constructive healing. This provides a potential solution for functional tissue regeneration, however, these acellular dECM scaffolds are challenging to fabricate into complex geometries. 3D bioprinting is uniquely positioned to address this, being able to create patient-specific scaffolds based on clinical 3D imaging data. Here, a process to use freeform reversible embedding of suspended hydrogels (FRESH) 3D bioprinting and computed tomography (CT) imaging to build large volume, patient-specific dECM patches (≈12 × 8 × 2 cm) for implantation into canine VML wound models is developed. Quantitative analysis shows that these dECM patches are dimensionally accurate and conformally adapt to the surface of complex wounds. Finally, this approach is extended to a human VML injury to demonstrate the fabrication of clinically relevant dECM scaffolds with precise control over fiber alignment and micro-architecture. Together these advancements represent a step towards an improved, clinically translatable, patient-specific treatment for soft tissue defects from trauma, tumor resection, and other surgical procedures.


Assuntos
Bioimpressão , Lesões dos Tecidos Moles , Humanos , Animais , Cães , Alicerces Teciduais , Matriz Extracelular , Músculos , Cicatrização , Bioimpressão/métodos , Impressão Tridimensional , Engenharia Tecidual/métodos
18.
Tissue Eng Part A ; 28(23-24): 941-957, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36039923

RESUMO

Skeletal muscle has a robust, inherent ability to regenerate in response to injury from acute to chronic. In severe trauma, however, complete regeneration is not possible, resulting in a permanent loss of skeletal muscle tissue referred to as volumetric muscle loss (VML). There are few consistently reliable therapeutic or surgical options to address VML. A major limitation in investigation of possible therapies is the absence of a well-characterized large animal model. In this study, we present results of a comprehensive transcriptomic, proteomic, and morphologic characterization of wound healing following VML in a novel canine model of VML which we compare to a nine-patient cohort of combat-associated VML. The canine model is translationally relevant as it provides both a regional (spatial) and temporal map of the wound healing processes that occur in human VML. Collectively, these data show the spatiotemporal transcriptomic, proteomic, and morphologic properties of canine VML healing as a framework and model system applicable to future studies investigating novel therapies for human VML. Impact Statement The spatiotemporal transcriptomic, proteomic, and morphologic properties of canine volumetric muscle loss (VML) healing is a translational framework and model system applicable to future studies investigating novel therapies for human VML.


Assuntos
Doenças Musculares , Transcriptoma , Cães , Animais , Humanos , Transcriptoma/genética , Proteômica , Regeneração/fisiologia , Cicatrização/genética , Músculo Esquelético/lesões , Doenças Musculares/terapia
19.
Tissue Eng Part A ; 28(21-22): 879-892, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35946072

RESUMO

Recent studies have identified an extracellular vesicle population that is tightly anchored within the extracellular matrix (ECM) of tissues and organs until released by matrix turnover events. Evidence suggests that these matrix-bound nanovesicles (MBVs) are a ubiquitous component of the ECM, raising questions regarding their tissue-specific identity and their biologic function(s). The primary objective of this study was to examine MBVs isolated from six different tissues and compare their physical and compositional characteristics to determine the common and differentially expressed features. Accordingly, the results of this characterization show that while MBVs are a ubiquitous component of the ECM, they contain a protein and microRNA cargo that is tissue specific. The results furthermore suggest that MBVs have an important role in regulating tissue homeostasis.


Assuntos
Matriz Extracelular , Vesículas Extracelulares , Matriz Extracelular/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Fagocitose , Comunicação Celular
20.
Tissue Eng Part A ; 28(19-20): 867-878, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35770892

RESUMO

The innate immune response, particularly the phenotype of responding macrophages, has significant clinical implications in the remodeling outcome following implantation of biomaterials and engineered tissues. In general, facilitation of an anti-inflammatory (M2-like) phenotype is associated with tissue repair and favorable outcomes, whereas pro-inflammatory (M1-like) activation can contribute to chronic inflammation and a classic foreign body response. Biologic scaffolds composed of extracellular matrix (ECM) and, more recently, matrix-bound nanovesicles (MBV) embedded within the ECM are known to direct macrophages toward an anti-inflammatory phenotype and stimulate a constructive remodeling outcome. The mechanisms of MBV-mediated macrophage activation are not fully understood, but interleukin-33 (IL-33) within the MBV appears critical for M2-like activation. Previous work has shown that IL-33 is encapsulated within the lumen of MBV and stimulates phenotypical changes in macrophages independent of its canonical surface receptor stimulation-2 (ST2). In the present study, we used next-generation RNA sequencing to determine the gene signature of macrophages following exposure to MBV with and without intraluminal IL-33. MBV-associated IL-33 instructed an anti-inflammatory phenotype in both wild-type and st2-/- macrophages by upregulating M2-like and downregulating M1-like genes. The repertoire of genes regulated by ST2-independent IL-33 signaling were broadly related to the inflammatory response and crosstalk between cells of both the innate and adaptive immune systems. These results signify the importance of the MBV intraluminal protein IL-33 in stimulating a pro-remodeling M2-like phenotype in macrophages and provides guidance for the designing of next-generation biomaterials and tissue engineering strategies. Impact statement The phenotype of responding macrophages is predictive of the downstream remodeling response to an implanted biomaterial. The clinical impact of macrophage phenotype has motivated studies to investigate the factors that regulate macrophage activation. Matrix-bound nanovesicles (MBV) embedded within the extracellular matrix direct macrophages toward an anti-inflammatory (M2)-like phenotype that is indicative of a favorable remodeling response. Although the mechanisms of MBV-mediated macrophage activation are not fully understood, the intraluminal protein interleukin-33 (IL-33) is clearly a contributing signaling molecule. The present study identifies those genes regulated by MBV-associated IL-33 that promote a pro-remodeling M2-like macrophage activation state and can guide future therapies in regenerative medicine.


Assuntos
Produtos Biológicos , Interleucina-33 , Interleucina-33/genética , Interleucina-33/metabolismo , Transcriptoma/genética , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Macrófagos/metabolismo , Materiais Biocompatíveis , Fenótipo , Anti-Inflamatórios , Produtos Biológicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA