Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(7): 5699-5720, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38530425

RESUMO

We report herein the potential of colony-stimulating factor-1 receptor (CSF1R) inhibitors as therapeutic agents in neuroinflammatory diseases, with a focus on Alzheimer's disease (AD). Employing a carefully modified scaffold, N-(4-heterocycloalkyl-2-cycloalkylphenyl)-5-methylisoxazole-3-carboxamide, we identify highly selective and potent CSF1R inhibitors─7dri and 7dsi. Molecular docking studies shed light on the binding modes of these key compounds within the CSF1R binding site. Remarkably, kinome-wide selectivity assessment underscores the impressive specificity of 7dri for CSF-1R. Notably, 7dri emerges as a potent CSF-1R inhibitor with favorable cellular activity and minimal cytotoxicity among the synthesized compounds. Demonstrating efficacy in inhibiting CSF1R phosphorylation in microglial cells and successfully mitigating neuroinflammation in an in vivo LPS-induced model, 7dri establishes itself as a promising antineuroinflammatory agent.


Assuntos
Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Fator Estimulador de Colônias de Macrófagos , Fosforilação , Simulação de Acoplamento Molecular , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos , Receptores Proteína Tirosina Quinases/metabolismo
2.
Eur J Med Chem ; 268: 116253, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401188

RESUMO

This study explores the potential of CSF-1R inhibitors as therapeutic agents for neurodegenerative diseases. CSF-1R, a receptor tyrosine kinase primarily expressed in macrophage lineages, plays a pivotal role in regulating various cellular processes. Recent research highlights the significance of CSF-1R inhibition in mitigating neuroinflammation, particularly in Alzheimer's disease, where microglial overactivation contributes to neurodegeneration. The research reveals a series of N-(5-amido-2-methylphenyl)-5-methylisoxazole-3-carboxamide CSF-1R inhibitors, where compounds 7d, 7e, and 9a exhibit outstanding inhibitory activities and selectivity, with IC50 values of 33, 31, and 64 nM, respectively. These most promising compounds in this series were profiled for cellular potency and subjected to in vitro pharmacokinetic profiling. These inhibitors exhibit minimal cytotoxicity, even at higher concentrations, and possess promising blood-brain barrier permeability, making them potential candidates for central nervous system diseases. The investigation into the in vitro ADME properties, including plasma and microsomal stability, reveals that these CSF-1R inhibitors maintain their structural integrity and plasma concentration. This resilience positions them for further development as therapeutic agents for neurodegenerative diseases.


Assuntos
Isoxazóis , Doenças Neurodegenerativas , Receptor de Fator Estimulador de Colônias de Macrófagos , Humanos , Receptor de Fator Estimulador de Colônias de Macrófagos/química , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Barreira Hematoencefálica/metabolismo , Receptores Proteína Tirosina Quinases , Inibidores Enzimáticos
3.
J Orthop Surg Res ; 18(1): 976, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38115076

RESUMO

BACKGROUND: The rolling contact joint (RCJ) mechanism is a system of constraint that allows two circular bodies connected with flexible straps to roll relative to one another without slipping. This study aims to compare the biomechanical characteristics between the conventional proximal interphalangeal joint (PIPJ) flexible hinge (FH) implant and the novel PIPJ implant adopting a RCJ mechanism during PIPJ range of motion using finite element (FE) analysis. METHODS: The three-dimensional (3D) surface shape of a conventional PIPJ FH implant was obtained using a 3D laser surface scanning system. The configuration and parameters of the novel PIPJ implant were adapted from a previous study. The two implants were assumed to have the same material characteristics and each implant was composed of a hyperelastic material, silicone elastomers. The configuration data for both implants were imported to a computer-aided design program to generate 3D geometrical surface and hyperelastic models of both implants. The hyperelastic models of both implants were imported into a structural engineering software to produce the FE mesh and to perform FE analysis. The FE analysis modeled the changes of mechanics during flexion-extension motion between 0° and 90° of two PIPJ implants. The mean and maximum values of von-Mises stress and strain as well as the total moment reaction based on the range of motion of the PIPJs were calculated. The mean values within the PIPJ's functional range of motion of the mean and maxinum von-Mises stress and strain and the total moment reaction were also determined. RESULTS: The maximum values for the von-Mises stress, and strain, as well as the total moment reactions of the conventional PIPJ FH and novel PIPJ implants were all at 90° of PIPJ flexion. The maximum value of each biomechanical property for the novel PIPJ implant was considerably lower compared with that of the conventional PIPJ FH implant. The mean values within the PIPJ's functional range of motion of the maximum von-Mises stress and strain for the novel PIPJ implant was approximately 6.43- and 6.46-fold lower compared with that of the conventional PIPJ FH implant, respectively. The mean value within a PIPJ's functional range of motion of the total moment reaction of the novel PIPJ implant was approximately 49.6-fold lower compared with that of the conventional PIPJ FH implant. CONCLUSIONS: The novel PIPJ implant with an RCJ mechanism may offer improved biomechanical performance compared with conventional PIPJ FH implant.


Assuntos
Articulações , Próteses e Implantes , Análise de Elementos Finitos , Estresse Mecânico , Software , Fenômenos Biomecânicos
4.
Eur J Med Chem ; 245(Pt 1): 114894, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36343411

RESUMO

Despite innumerable efforts to develop effective therapeutics, it is difficult to achieve breakthrough treatments for Alzheimer's disease (AD), and the main reason is probably the absence of a clear target. Here, we reveal c-Jun N-terminal kinase 3 (JNK3), a protein kinase explicitly expressed in the brain and involved in neuronal apoptosis, with a view toward providing effective treatment for AD. For many years, we have worked on JNK3 inhibitors and have discovered 2-aryl-1-pyrimidinyl-1H-imidazole-5-yl acetonitrile-based JNK3 inhibitors with superb potency (IC50 < 1.0 nM) and excellent selectivity over other protein kinases including isoforms JNK1 (>300 fold) and JNK2 (∼10 fold). Based on in vitro biological activity and DMPK properties, the lead compounds were selected for further in vivo studies. We confirmed that repeat administration of JNK3 inhibitors improved cognitive memory in APP/PS1 and the 3xTg mouse model. Overall, our results show that JNK3 could be a potential target protein for AD.


Assuntos
Doença de Alzheimer , Imidazóis , Proteína Quinase 10 Ativada por Mitógeno , Inibidores de Proteínas Quinases , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/enzimologia , Apoptose/efeitos dos fármacos , Imidazóis/química , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Proteína Quinase 10 Ativada por Mitógeno/antagonistas & inibidores , Isoformas de Proteínas/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Modelos Animais de Doenças
5.
Pharmaceuticals (Basel) ; 15(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36297281

RESUMO

Cancer continues to be one of the world's most severe public health issues. Polo-like kinase 1 (PLK1) is one of the most studied members of the polo-like kinase subfamily of serine/threonine protein kinases. PLK1 is a key mitotic regulator responsible for cell cycle processes, such as mitosis initiation, bipolar mitotic spindle formation, centrosome maturation, the metaphase to anaphase transition, and mitotic exit, whose overexpression is often associated with oncogenesis. Moreover, it is also involved in DNA damage response, autophagy, cytokine signaling, and apoptosis. Due to its fundamental role in cell cycle regulation, PLK1 has been linked to various types of cancer onset and progression, such as lung, colon, prostate, ovary, breast cancer, melanoma, and AML. Hence, PLK1 is recognized as a critical therapeutic target in the treatment of various proliferative diseases. PLK1 inhibitors developed in recent years have been researched and studied through clinical trials; however, most of them have failed because of their toxicity and poor therapeutic response. To design more potent and selective PLK1 inhibitors, we performed a receptor-based hybrid 3D-QSAR study of two datasets, possessing similar common scaffolds. The developed hybrid CoMFA (q2 = 0.628, r2 = 0.905) and CoMSIA (q2 = 0.580, r2 = 0.895) models showed admissible statistical results. Comprehensive, molecular docking of one of the most active compounds from the dataset and hybrid 3D-QSAR studies revealed important active site residues of PLK1 and requisite structural characteristics of ligand to design potent PLK1 inhibitors. Based on this information, we have proposed approximately 38 PLK1 inhibitors. The newly designed PLK1 inhibitors showed higher activity (predicted pIC50) than the most active compounds of all the derivatives selected for this study. We selected and synthesized two compounds, which were ultimately found to possess good IC50 values. Our design strategy provides insight into development of potent and selective PLK1 inhibitors.

6.
J Enzyme Inhib Med Chem ; 37(1): 472-486, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35067150

RESUMO

Fms-like tyrosine kinase 3 (FLT3) has been verified as a therapeutic target for acute myeloid leukaemia (AML). In this study, we report a series of 2-(1H-indazol-6-yl)-1H-benzo[d]imidazol-5-yl benzamide and phenyl urea derivatives as potent FLT3 inhibitors based on the structural optimisation of previous FLT3 inhibitors. Derivatives were synthesised as benzamide 8a-k, 8n-z, and phenyl urea 8l-m, with various substituents. The most potent inhibitor, 8r, demonstrated strong inhibitory activity against FLT3 and FLT3 mutants with a nanomolar IC50 and high selectivity profiles over 42 protein kinases. In addition, these type II FLT3 inhibitors were more potent against FLT3 mutants correlated with drug resistance. Overall, we provide a theoretical basis for the structural optimisation of novel benzimidazole analogues to develop strong inhibitors against FLT3 mutants for AML therapeutics.


Assuntos
Benzimidazóis/farmacologia , Desenho de Fármacos , Inibidores de Proteínas Quinases/farmacologia , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Benzimidazóis/síntese química , Benzimidazóis/química , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Mutação , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo
7.
Food Chem ; 110(4): 979-84, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26047289

RESUMO

A gene encoding a putative glycogen branching enzyme (SmGBE) in Streptococcus mutans was expressed in Escherichia coli and purified. The biochemical properties of the purified enzyme were examined relative to its branching specificity for amylose and starch. The activity of the approximately 75kDa enzyme was optimal at pH 5.0, and stable up to 40°C. The enzyme predominantly transferred short maltooligosyl chains with a degree of polymerization (dp) of 6 and 7 throughout the branching process for amylose. When incubated with rice starch, the enzyme modified its optimal branch chain-length from dp 12 to 6 with large reductions in the longer chains, and simultaneously increased its branching points. The results indicate that SmGBE can make a modified starch with much shorter branches and a more branched structure than to native starch. In addition, starch retrogradation due to low temperature storage was significantly retarded along with the enzyme reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA