Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 8(38): eabn3181, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36129985

RESUMO

Efficient doping for modulating electrical properties of two-dimensional (2D) transition metal dichalcogenide (TMDC) semiconductors is essential for meeting the versatile requirements for future electronic and optoelectronic devices. Because doping of semiconductors, including TMDCs, typically involves generation of charged dopants that hinder charge transport, tackling Coulomb scattering induced by the externally introduced dopants remains a key challenge in achieving ultrahigh mobility 2D semiconductor systems. In this study, we demonstrated remote charge transfer doping by simply inserting a hexagonal boron nitride layer between MoS2 and solution-deposited n-type dopants, benzyl viologen. A quantitative analysis of temperature-dependent charge transport in remotely doped devices supports an effective suppression of the dopant-induced scattering relative to the conventional direct doping method. Our mechanistic investigation of the remote doping method promotes the charge transfer strategy as a promising method for material-level tailoring of electrical and optoelectronic devices based on TMDCs.

2.
Nat Commun ; 13(1): 4263, 2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35871221

RESUMO

Embedding metal-halide perovskite particles within an insulating host matrix has proven to be an effective strategy for revealing the outstanding luminescence properties of perovskites as an emerging class of light emitters. Particularly, unexpected bright green emission observed in a nominally pure zero-dimensional cesium-lead-bromide perovskite (Cs4PbBr6) has triggered intensive research in better understanding the serendipitous incorporation of emissive guest species within the Cs4PbBr6 host. However, a limited controllability over such heterostructural configurations in conventional solution-based synthesis methods has limited the degree of freedom in designing synthesis routes for accessing different structural and compositional configurations of these host-guest species. In this study, we provide means of enhancing the luminescence properties in the nominal Cs4PbBr6 powder through a guided heterostructural configuration engineering enabled by solid-state mechanochemical synthesis. Realized by an in-depth study on time-dependent evaluation of optical and structural properties during the synthesis of Cs4PbBr6, our target-designed synthesis protocol to promote the endotaxial formation of Cs4PbBr6/CsPbBr3 heterostructures provides key insights for understanding and designing kinetics-guided syntheses of highly luminescent perovskite emitters for light-emitting applications.

3.
ACS Nano ; 16(4): 5376-5383, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35377607

RESUMO

Recently there has been growing interest in avalanche multiplication in two-dimensional (2D) materials and device applications such as avalanche photodetectors and transistors. Previous studies have mainly utilized unipolar semiconductors as the active material and focused on developing high-performance devices. However, fundamental analysis of the multiplication process, particularly in ambipolar materials, is required to establish high-performance electronic devices and emerging architectures. Although ambipolar 2D materials have the advantage of facile carrier-type tuning through electrostatic gating, simultaneously allowing both carrier types in a single channel poses an inherent difficulty in analyzing their individual contributions to avalanche multiplication. In ambipolar field-effect transistors (FETs), two phenomena of ambipolar transport and avalanche multiplication can occur, and both exhibit secondary rise of output current at high lateral voltage. We distinguished these two competing phenomena using the method of channel length modulation and successfully analyzed the properties of electron- and hole-initiated multiplication in ambipolar WSe2 FETs. Our study provides a simple and robust method to examine carrier multiplication in ambipolar materials and will foster the development of high-performance atomically thin electronic devices utilizing avalanche multiplication.

4.
Nanotechnology ; 33(6)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34715679

RESUMO

A hybrid organic-inorganic halide perovskite is a promising material for developing efficient solar cell devices, with potential applications in space science. In this study, we synthesized methylammonium lead iodide (MAPbI3) perovskites via two methods: mechanochemical synthesis and flash evaporation. We irradiated these perovskites with highly energetic 10 MeV proton-beam doses of 1011, 1012, 1013, and 4 × 1013protons cm-2and examined the proton irradiation effects on the physical properties of MAPbI3perovskites. The physical properties of the mechanochemically synthesized MAPbI3perovskites were not considerably affected after proton irradiation. However, the flash-evaporated MAPbI3perovskites showed a new peak in x-ray diffraction and an increased fluorescence lifetime in time-resolved photoluminescence under high-dose conditions, indicating considerable changes in their physical properties. This difference in behavior between MAPbI3perovskites synthesized via the abovementioned two methods may be attributed to differences in radiation hardness associated with the bonding strength of the constituents, particularly Pb-I bonds. Our study will help to understand the radiation effect of proton beams on organometallic halide perovskite materials.

5.
Adv Mater ; 33(44): e2101598, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34533851

RESUMO

The controllability of carrier density and major carrier type of transition metal dichalcogenides(TMDCs) is critical for electronic and optoelectronic device applications. To utilize doping in TMDC devices, it is important to understand the role of dopants in charge transport properties of TMDCs. Here, the effects of molecular doping on the charge transport properties of tungsten diselenide (WSe2 ) are investigated using three p-type molecular dopants, 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4 -TCNQ), tris(4-bromophenyl)ammoniumyl hexachloroantimonate (magic blue), and molybdenum tris(1,2-bis(trifluoromethyl)ethane-1,2-dithiolene) (Mo(tfd-COCF3 )3 ). The temperature-dependent transport measurements show that the dopant counterions on WSe2 surface can induce Coulomb scattering in WSe2 channel and the degree of scattering is significantly dependent on the dopant. Furthermore, the quantitative analysis revealed that the amount of charge transfer between WSe2 and dopants is related to not only doping density, but also the contribution of each dopant ion toward Coulomb scattering. The first-principles density functional theory calculations show that the amount of charge transfer is mainly determined by intrinsic properties of the dopant molecules such as relative frontier orbital positions and their spin configurations. The authors' systematic investigation of the charge transport of doped TMDCs will be directly relevant for pursuing molecular routes for efficient and controllable doping in TMDC nanoelectronic devices.

6.
Nanotechnology ; 32(18): 185203, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33498023

RESUMO

Ruddlesden-Popper (RP) perovskites have attracted a lot of attention as the active layer for optoelectronic devices due to their excellent photophysical properties and environmental stability. Especially, local structural properties of RP perovskites have shown to play important roles in determining the performance of optoelectronic devices. Here, we report the photodetector performance variation depending on the crystallinity of n = 4 two-dimensional (2D) RP perovskite polycrystalline films. Through controlling the solvent evaporation rate, 2D RP perovskite films could be tuned between highly- and randomly-orientated phases. We investigated how different factors related to the film crystallinity are reflected in the variation of photodetector performances by considering grain boundary and low energy edge state effects in n = 4 RP perovskites. Better understanding the interplay between these factors that govern the photophysical properties of the devices would be beneficial for designing high-performance RP perovskite-based optoelectronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA