Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(6): 7130-7140, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38315977

RESUMO

Colloidal PbS quantum-dot solar cells (QDSCs) have long suffered from inefficient charge collection near the back-junction due to the lack of p-doping strategy, rendering their bifacial photovoltaic applications unsuccessful. Here, we report highly efficient photocarrier collection in bifacial colloidal PbS QDSCs by exploiting spray-coated silver nanowires (AgNWs) top electrodes. During our spray-coating process, pressurized Ag diffusion occurred toward the active layer, which induced effective p-doping and deep-level passivation. By manipulating the spray pressure, optimum AgNWs' stacking morphology enabling an appropriate level of Ag diffusion could be achieved, leading to Jsc over 30 mA/cm2 from the conventional n-i-p structure upon light illumination to the film side. The morphological and electrical behaviors of AgNWs according to the spray pressure are comprehensively explained in relation to the device performance. Finally, 50 bifacial cells were fabricated over 49 cm2 sized glass substrate, demonstrating the large-area processability and functionality of the spray-coated AgNWs with the effective back-junction engineering.

2.
Adv Sci (Weinh) ; 11(13): e2306798, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38240455

RESUMO

Solution-processed low-bandgap semiconductors are crucial to next-generation infrared (IR) detection for various applications, such as autonomous driving, virtual reality, recognitions, and quantum communications. In particular, III-V group colloidal quantum dots (CQDs) are interesting as nontoxic bandgap-tunable materials and suitable for IR absorbers; however, the device performance is still lower than that of Pb-based devices. Herein, a universal surface-passivation method of InAs CQDs enabled by intermediate phase transfer (IPT), a preliminary process that exchanges native ligands with aromatic ligands on the CQD surface is presented. IPT yields highly stable CQD ink. In particular, desirable surface ligands with various reactivities can be obtained by dispersing them in green solvents. Furthermore, CQD near-infrared (NIR) photodetectors are demonstrated using solution processes. Careful surface ligand control via IPT is revealed that enables the modulation of surface-mediated photomultiplication, resulting in a notable gain control up to ≈10 with a fast rise/fall response time (≈12/36 ns). Considering the figure of merit (FOM), EQE versus response time (or -3 dB bandwidth), the optimal CQD photodiode yields one of the highest FOMs among all previously reported solution-processed nontoxic semiconductors comprising organics, perovskites, and CQDs in the NIR wavelength range.

3.
Adv Mater ; 34(33): e2203039, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35767306

RESUMO

Colloidal quantum dots (CQDs) are promising materials for infrared (IR) light detection due to their tunable bandgap and their solution processing; however, to date, the time response of CQD IR photodiodes is inferior to that provided by Si and InGaAs. It is reasoned that the high permittivity of II-VI CQDs leads to slow charge extraction due to screening and capacitance, whereas III-Vs-if their surface chemistry can be mastered-offer a low permittivity and thus increase potential for high-speed operation. In initial studies, it is found that the covalent character in indium arsenide (InAs) leads to imbalanced charge transport, the result of unpassivated surfaces, and uncontrolled heavy doping. Surface management using amphoteric ligand coordination is reported, and it is found that the approach addresses simultaneously the In and As surface dangling bonds. The new InAs CQD solids combine high mobility (0.04 cm2 V-1 s-1 ) with a 4× reduction in permittivity compared to PbS CQDs. The resulting photodiodes achieve a response time faster than 2 ns-the fastest photodiode among previously reported CQD photodiodes-combined with an external quantum efficiency (EQE) of 30% at 940 nm.

4.
Adv Mater ; 33(33): e2101056, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34245178

RESUMO

Charge carrier transport in colloidal quantum dot (CQD) solids is strongly influenced by coupling among CQDs. The shape of as-synthesized CQDs results in random orientational relationships among facets in CQD solids, and this limits the CQD coupling strength and the resultant performance of optoelectronic devices. Here, colloidal-phase reconstruction of CQD surfaces, which improves facet alignment in CQD solids, is reported. This strategy enables control over CQD faceting and allows demonstration of enhanced coupling in CQD solids. The approach utilizes post-synthetic resurfacing and unites surface passivation and colloidal stability with a propensity for dots to couple via (100):(100) facets, enabling increased hole mobility. Experimentally, the CQD solids exhibit a 10× increase in measured hole mobility compared to control CQD solids, and enable photodiodes (PDs) exhibiting 70% external quantum efficiency (vs 45% for control devices) and specific detectivity, D* > 1012  Jones, each at 1550 nm. The photodetectors feature a 7 ns response time for a 0.01 mm2 area-the fastest reported for solution-processed short-wavelength infrared PDs.

5.
ACS Appl Mater Interfaces ; 12(52): 57840-57846, 2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33320537

RESUMO

Colloidal quantum dots (CQDs) have large surface-to-volume ratios; thus, surface control is critical, especially when CQDs are utilized in optoelectronic devices. Layer-by-layer solid-state ligand exchange is a facile and applicable process for the formation of conductive CQD solids through various ligands; however, achieving complete ligand exchange on the CQD surface without dangling bonds is challenging. Herein, we demonstrate that CQDs can be further passivated through two-step annealing; air annealing forms sulfonate bonding at (111) Pb-rich surfaces, and subsequent N2 annealing removes insulating oxygen layers from the (100) surfaces of CQDs. By subsequently conducting annealing treatment in two different environments, traps on the surface of CQDs could be significantly reduced. We achieved a 40.8% enhancement of the power conversion efficiency by optimizing each two-step annealing process.

6.
Adv Mater ; 32(48): e2004985, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33118229

RESUMO

The need for optoelectronic and chemical compatibility between the layers in colloidal quantum dot (CQD) photovoltaic devices remains a bottleneck in further increasing performance. Conjugated polymers are promising candidates as new hole-transport layer (HTL) materials in CQD solar cells (CQD-SCs) owing to the highly tunable optoelectronic properties and compatible chemistries. A diketopyrrolopyrrole-based polymer with benzothiadiazole derivatives (PD2FCT-29DPP) as an HTL in these devices is reported. The energy level, molecular orientation, and hole mobility of this HTL are manipulated through molecular engineering. By levering the polymer's optical absorption spectrum complementary to that of the CQD active layer, EQE across the visible and near-infrared regions is maximized. As a result, a PD2FCT-29DPP-based device exhibits a fill factor of 70% and approximately 35% efficiency enhancement compared to a PTB7-based device.

7.
Adv Mater ; 32(42): e2004657, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32939875

RESUMO

Monolithically integrated hybrid tandem solar cells (TSCs) that combine solution-processed colloidal quantum dot (CQD) and organic molecules are a promising device architecture, able to complement the absorption across the visible to the infrared. However, the performance of organic/CQD hybrid TSCs has not yet surpassed that of single-junction CQD solar cells. Here, a strategic optical structure is devised to overcome the prior performance limit of hybrid TSCs by employing a multibuffer layer and a dual near-infrared (NIR) absorber. In particular, a multibuffer layer is introduced to solve the problem of the CQD solvent penetrating the underlying organic layer. In addition, the matching current of monolithic TSCs is significantly improved to 15.2 mA cm-2 by using a dual NIR organic absorber that complements the absorption of CQD. The hybrid TSCs reach a power conversion efficiency (PCE) of 13.7%, higher than that of the corresponding individual single-junction cells, representing the highest efficiency reported to date for CQD-based hybrid TSCs.

8.
Nat Commun ; 11(1): 4814, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32968078

RESUMO

Surface ligands enable control over the dispersibility of colloidal quantum dots (CQDs) via steric and electrostatic stabilization. Today's device-grade CQD inks have consistently relied on highly polar solvents: this enables facile single-step deposition of multi-hundred-nanometer-thick CQD films; but it prevents the realization of CQD film stacks made up of CQDs having different compositions, since polar solvents redisperse underlying films. Here we introduce aromatic ligands to achieve process-orthogonal CQD inks, and enable thereby multifunctional multilayer CQD solids. We explore the effect of the anchoring group of the aromatic ligand on the solubility of CQD inks in weakly-polar solvents, and find that a judicious selection of the anchoring group induces a dipole that provides additional CQD-solvent interactions. This enables colloidal stability without relying on bulky insulating ligands. We showcase the benefit of this ink as the hole transport layer in CQD optoelectronics, achieving an external quantum efficiency of 84% at 1210 nm.

9.
Adv Sci (Weinh) ; 7(15): 2000894, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32775165

RESUMO

Colloidal quantum dots (CQDs) are of interest for optoelectronic applications owing to their tunable properties and ease of processing. Large-diameter CQDs offer optical response in the infrared (IR), beyond the bandgap of c-Si and perovskites. The absorption coefficient of IR CQDs (≈104 cm-1) entails the need for micrometer-thick films to maximize the absorption of IR light. This exceeds the thickness compatible with the efficient extraction of photogenerated carriers, a fact that limits device performance. Here, CQD bulk heterojunction solids are demonstrated that, with extended carrier transport length, enable efficient IR light harvesting. An in-solution doping strategy for large-diameter CQDs is devised that addresses the complex interplay between (100) facets and doping agents, enabling to control CQD doping, energetic configuration, and size homogeneity. The hetero-offset between n-type CQDs and p-type CQDs is manipulated to drive the transfer of electrons and holes into distinct carrier extraction pathways. This enables to form active layers exceeding thicknesses of 700 nm without compromising open-circuit voltage and fill factor. As a result, >90% charge extraction efficiency across the ultraviolet to IR range (350-1400 nm) is documented.

10.
Nat Nanotechnol ; 15(8): 668-674, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32632321

RESUMO

Colloidal quantum dot (QD) solids are emerging semiconductors that have been actively explored in fundamental studies of charge transport1 and for applications in optoelectronics2. Forming high-quality QD solids-necessary for device fabrication-requires substitution of the long organic ligands used for synthesis with short ligands that provide increased QD coupling and improved charge transport3. However, in perovskite QDs, the polar solvents used to carry out the ligand exchange decompose the highly ionic perovskites4. Here we report perovskite QD resurfacing to achieve a bipolar shell consisting of an inner anion shell, and an outer shell comprised of cations and polar solvent molecules. The outer shell is electrostatically adsorbed to the negatively charged inner shell. This approach produces strongly confined perovskite QD solids that feature improved carrier mobility (≥0.01 cm2 V-1 s-1) and reduced trap density relative to previously reported low-dimensional perovskites. Blue-emitting QD films exhibit photoluminescence quantum yields exceeding 90%. By exploiting the improved mobility, we have been able to fabricate CsPbBr3 QD-based efficient blue and green light-emitting diodes. Blue devices with reduced trap density have an external quantum efficiency of 12.3%; the green devices achieve an external quantum efficiency of 22%.

11.
Nano Lett ; 20(7): 5284-5291, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32543860

RESUMO

Shortwave infrared colloidal quantum dots (SWIR-CQDs) are semiconductors capable of harvesting across the AM1.5G solar spectrum. Today's SWIR-CQD solar cells rely on spin-coating; however, these films exhibit cracking once thickness exceeds ∼500 nm. We posited that a blade-coating strategy could enable thick QD films. We developed a ligand exchange with an additional resolvation step that enabled the dispersion of SWIR-CQDs. We then engineered a quaternary ink that combined high-viscosity solvents with short QD stabilizing ligands. This ink, blade-coated over a mild heating bed, formed micron-thick SWIR-CQD films. These SWIR-CQD solar cells achieved short-circuit current densities (Jsc) that reach 39 mA cm-2, corresponding to the harvest of 60% of total photons incident under AM1.5G illumination. External quantum efficiency measurements reveal both the first exciton peak and the closest Fabry-Perot resonance peak reaching approximately 80%-this is the highest unbiased EQE reported beyond 1400 nm in a solution-processed semiconductor.

12.
Adv Mater ; 32(17): e1906199, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32196136

RESUMO

Colloidal quantum dots (CQDs) are of interest in light of their solution-processing and bandgap tuning. Advances in the performance of CQD optoelectronic devices require fine control over the properties of each layer in the device materials stack. This is particularly challenging in the present best CQD solar cells, since these employ a p-type hole-transport layer (HTL) implemented using 1,2-ethanedithiol (EDT) ligand exchange on top of the CQD active layer. It is established that the high reactivity of EDT causes a severe chemical modification to the active layer that deteriorates charge extraction. By combining elemental mapping with the spatial charge collection efficiency in CQD solar cells, the key materials interface dominating the subpar performance of prior CQD PV devices is demonstrated. This motivates to develop a chemically orthogonal HTL that consists of malonic-acid-crosslinked CQDs. The new crosslinking strategy preserves the surface chemistry of the active layer beneath, and at the same time provides the needed efficient charge extraction. The new HTL enables a 1.4× increase in charge carrier diffusion length in the active layer; and as a result leads to an improvement in power conversion efficiency to 13.0% compared to EDT standard cells (12.2%).

13.
Nat Commun ; 11(1): 1257, 2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-32152324

RESUMO

Tandem solar cells involving metal-halide perovskite subcells offer routes to power conversion efficiencies (PCEs) that exceed the single-junction limit; however, reported PCE values for tandems have so far lain below their potential due to inefficient photon harvesting. Here we increase the optical path length in perovskite films by preserving smooth morphology while increasing thickness using a method we term boosted solvent extraction. Carrier collection in these films - as made - is limited by an insufficient electron diffusion length; however, we further find that adding a Lewis base reduces the trap density and enhances the electron-diffusion length to 2.3 µm, enabling a 19% PCE for 1.63 eV semi-transparent perovskite cells having an average near-infrared transmittance of 85%. The perovskite top cell combined with solution-processed colloidal quantum dot:organic hybrid bottom cell leads to a PCE of 24%; while coupling the perovskite cell with a silicon bottom cell yields a PCE of 28.2%.

14.
Science ; 367(6482): 1135-1140, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32139544

RESUMO

Stacking solar cells with decreasing band gaps to form tandems presents the possibility of overcoming the single-junction Shockley-Queisser limit in photovoltaics. The rapid development of solution-processed perovskites has brought perovskite single-junction efficiencies >20%. However, this process has yet to enable monolithic integration with industry-relevant textured crystalline silicon solar cells. We report tandems that combine solution-processed micrometer-thick perovskite top cells with fully textured silicon heterojunction bottom cells. To overcome the charge-collection challenges in micrometer-thick perovskites, we enhanced threefold the depletion width at the bases of silicon pyramids. Moreover, by anchoring a self-limiting passivant (1-butanethiol) on the perovskite surfaces, we enhanced the diffusion length and further suppressed phase segregation. These combined enhancements enabled an independently certified power conversion efficiency of 25.7% for perovskite-silicon tandem solar cells. These devices exhibited negligible performance loss after a 400-hour thermal stability test at 85°C and also after 400 hours under maximum power point tracking at 40°C.

15.
Adv Mater ; 32(7): e1906497, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31930771

RESUMO

Colloidal quantum dots (CQDs) are promising materials for photovoltaic (PV) applications owing to their size-tunable bandgap and solution processing. However, reports on CQD PV stability have been limited so far to storage in the dark; or operation illuminated, but under an inert atmosphere. CQD PV devices that are stable under continuous operation in air have yet to be demonstrated-a limitation that is shown here to arise due to rapid oxidation of both CQDs and surface passivation. Here, a stable CQD PV device under continuous operation in air is demonstrated by introducing additional potassium iodide (KI) on the CQD surface that acts as a shielding layer and thus stands in the way of oxidation of the CQD surface. The devices (unencapsulated) retain >80% of their initial efficiency following 300 h of continuous operation in air, whereas CQD PV devices without KI lose the amount of performance within just 21 h. KI shielding also provides improved surface passivation and, as a result, a higher power conversion efficiency (PCE) of 12.6% compared with 11.4% for control devices.

16.
Nat Commun ; 11(1): 103, 2020 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-31900394

RESUMO

Control over carrier type and doping levels in semiconductor materials is key for optoelectronic applications. In colloidal quantum dots (CQDs), these properties can be tuned by surface chemistry modification, but this has so far been accomplished at the expense of reduced surface passivation and compromised colloidal solubility; this has precluded the realization of advanced architectures such as CQD bulk homojunction solids. Here we introduce a cascade surface modification scheme that overcomes these limitations. This strategy provides control over doping and solubility and enables n-type and p-type CQD inks that are fully miscible in the same solvent with complete surface passivation. This enables the realization of homogeneous CQD bulk homojunction films that exhibit a 1.5 times increase in carrier diffusion length compared with the previous best CQD films. As a result, we demonstrate the highest power conversion efficiency (13.3%) reported among CQD solar cells.

17.
Adv Mater ; 31(33): e1901745, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31222877

RESUMO

Colloidal quantum dots (CQDs) can be used to extend the response of solar cells, enabling the utilization of solar power that lies to the red of the bandgap of c-Si and perovskites. To achieve largely complete absorption of infrared (IR) photons in CQD solids requires thicknesses on the micrometer range; however, this exceeds the typical diffusion lengths (≈300 nm) of photoexcited charges in these materials. Nanostructured metal back electrodes that grant the cell efficient IR light trapping in thin active layers with no deterioration of the electrical properties are demonstrated. Specifically, a new hole-transport layer (HTL) is developed and directly nanostructured. Firstly, a material set to replace conventional rigid HTLs in CQD devices is developed with a moldable HTL that combines the mechanical and chemical requisites for nanoimprint lithography with the optoelectronic properties necessary to retain efficient charge extraction through an optically thick layer. The new HTL is nanostructured in a 2D lattice and conformally coated with MoO3 /Ag. The photonic structure in the back electrode provides a record photoelectric conversion efficiency of 86%, beyond the Si bandgap, and a 22% higher IR power conversion efficiency compared to the best previous reports.

18.
Adv Mater ; 30(45): e1803830, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30276885

RESUMO

The best-performing colloidal-quantum-dot (CQD) photovoltaic devices suffer from charge recombination within the quasi-neutral region near the back hole-extracting junction. Graded architectures, which provide a widened depletion region at the back junction of device, could overcome this challenge. However, since today's best materials are processed using solvents that lack orthogonality, these architectures have not yet been implemented using the best-performing CQD solids. Here, a new CQD ink that is stable in nonpolar solvents is developed via a neutral donor ligand that functions as a phase-transfer catalyst. This enables the realization of an efficient graded architecture that, with an engineered band-alignment at the back junction, improves the built-in field and charge extraction. As a result, optimized IR CQD solar cells (Eg ≈ 1.3 eV) exhibiting a power conversion efficiency (PCE) of 12.3% are reported. The strategy is applied to small-bandgap (1 eV) IR CQDs to augment the performance of perovskite and crystalline silicon (cSi) 4-terminal tandem solar cells. The devices show the highest PCE addition achieved using a solution-processed active layer: a value of +5% when illuminated through a 1.58 eV bandgap perovskite front filter, providing a pathway to exceed PCEs of 23% in 4T tandem configurations with IR CQD PVs.

19.
J Am Chem Soc ; 140(36): 11378-11386, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30113834

RESUMO

The electrochemical carbon dioxide reduction reaction (CO2RR) produces diverse chemical species. Cu clusters with a judiciously controlled surface coordination number (CN) provide active sites that simultaneously optimize selectivity, activity, and efficiency for CO2RR. Here we report a strategy involving metal-organic framework (MOF)-regulated Cu cluster formation that shifts CO2 electroreduction toward multiple-carbon product generation. Specifically, we promoted undercoordinated sites during the formation of Cu clusters by controlling the structure of the Cu dimer, the precursor for Cu clusters. We distorted the symmetric paddle-wheel Cu dimer secondary building block of HKUST-1 to an asymmetric motif by separating adjacent benzene tricarboxylate moieties using thermal treatment. By varying materials processing conditions, we modulated the asymmetric local atomic structure, oxidation state and bonding strain of Cu dimers. Using electron paramagnetic resonance (EPR) and in situ X-ray absorption spectroscopy (XAS) experiments, we observed the formation of Cu clusters with low CN from distorted Cu dimers in HKUST-1 during CO2 electroreduction. These exhibited 45% C2H4 faradaic efficiency (FE), a record for MOF-derived Cu cluster catalysts. A structure-activity relationship was established wherein the tuning of the Cu-Cu CN in Cu clusters determines the CO2RR selectivity.

20.
Nano Lett ; 18(7): 4417-4423, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29912564

RESUMO

Colloidal quantum dots (CQDs) are promising solution-processed infrared-absorbing materials for optoelectronics. In these applications, it is crucial to replace the electrically insulating ligands used in synthesis to form strongly coupled quantum dot solids. Recently, solution-phase ligand-exchange strategies have been reported that minimize the density of defects and the polydispersity of CQDs; however, we find herein that the new ligands exhibit insufficient chemical reactivity to remove original oleic acid ligands completely. This leads to low CQD packing and correspondingly low electronic performance. Here we report an acid-assisted solution-phase ligand-exchange strategy that, by enabling efficient removal of the original ligands, enables the synthesis of densified CQD arrays. Our use of hydroiodic acid simultaneously facilitates high CQD packing via proton donation and CQD passivation through iodine. We demonstrate highly packed CQD films with a 2.5 times increased carrier mobility compared with prior exchanges. The resulting devices achieve the highest infrared photon-to-electron conversion efficiencies (>50%) reported in the spectral range of 0.8 to 1.1 eV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA