Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(1): e17086, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273496

RESUMO

Plant communities are being exposed to changing environmental conditions all around the globe, leading to alterations in plant diversity, community composition, and ecosystem functioning. For herbaceous understorey communities in temperate forests, responses to global change are postulated to be complex, due to the presence of a tree layer that modulates understorey responses to external pressures such as climate change and changes in atmospheric nitrogen deposition rates. Multiple investigative approaches have been put forward as tools to detect, quantify and predict understorey responses to these global-change drivers, including, among others, distributed resurvey studies and manipulative experiments. These investigative approaches are generally designed and reported upon in isolation, while integration across investigative approaches is rarely considered. In this study, we integrate three investigative approaches (two complementary resurvey approaches and one experimental approach) to investigate how climate warming and changes in nitrogen deposition affect the functional composition of the understorey and how functional responses in the understorey are modulated by canopy disturbance, that is, changes in overstorey canopy openness over time. Our resurvey data reveal that most changes in understorey functional characteristics represent responses to changes in canopy openness with shifts in macroclimate temperature and aerial nitrogen deposition playing secondary roles. Contrary to expectations, we found little evidence that these drivers interact. In addition, experimental findings deviated from the observational findings, suggesting that the forces driving understorey change at the regional scale differ from those driving change at the forest floor (i.e., the experimental treatments). Our study demonstrates that different approaches need to be integrated to acquire a full picture of how understorey communities respond to global change.


Assuntos
Ecossistema , Florestas , Árvores , Plantas , Nitrogênio
2.
New Phytol ; 241(5): 2287-2299, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38126264

RESUMO

Global change has accelerated local species extinctions and colonizations, often resulting in losses and gains of evolutionary lineages with unique features. Do these losses and gains occur randomly across the phylogeny? We quantified: temporal changes in plant phylogenetic diversity (PD); and the phylogenetic relatedness (PR) of lost and gained species in 2672 semi-permanent vegetation plots in European temperate forest understories resurveyed over an average period of 40 yr. Controlling for differences in species richness, PD increased slightly over time and across plots. Moreover, lost species within plots exhibited a higher degree of PR than gained species. This implies that gained species originated from a more diverse set of evolutionary lineages than lost species. Certain lineages also lost and gained more species than expected by chance, with Ericaceae, Fabaceae, and Orchidaceae experiencing losses and Amaranthaceae, Cyperaceae, and Rosaceae showing gains. Species losses and gains displayed no significant phylogenetic signal in response to changes in macroclimatic conditions and nitrogen deposition. As anthropogenic global change intensifies, temperate forest understories experience losses and gains in specific phylogenetic branches and ecological strategies, while the overall mean PD remains relatively stable.


Les changements globaux accélèrent les processus de colonisation et d'extinction locales d'espèces, aboutissant à des gains ou à des pertes de lignées évolutives uniques. Ces gains et pertes se produisent-ils de manière aléatoire dans l'arbre phylogénétique ? Nous avons mesuré: les changements de diversité phylogénétique; et la parenté phylogénétique des espèces végétales gagnées ou perdues dans 2672 placettes semi-permanentes disposées dans le sous-bois de forêts tempérées d'Europe sur une période moyenne de 40 ans. Une fois corrigée par la richesse spécifique, la diversité phylogénétique a légèrement augmenté au cours du temps dans les différentes placettes. Les espèces perdues ont une plus grande parenté phylogénétique que les espèces gagnées. Les espèces gagnées sont donc issues d'un plus grand nombre de lignées évolutives que les espèces perdues. Certaines lignées ont gagné ou perdu davantage d'espèces que ce qui est prédit par le hasard : les Ericaceae, les Fabaceae et les Orchidaceae ayant davantage perdu, tandis que les Amaranthaceae, les Cyperaceae, et les Rosaceae ont plus gagné. Il n'y a pas de signal phylogénétique des gains ou pertes d'espèces en réponse aux changements de conditions macroclimatiques ou des dépôts atmosphériques d'azote. Alors que les changements globaux d'origine anthropique s'intensifient, les sous-bois des forêts tempérées connaissent des gains et des pertes de certaines lignées évolutives et de certaines stratégies écologiques, sans que la diversité phylogénétique moyenne ne s'en trouve véritablement affectée.


El cambio global ha acelerado las extinciones y colonizaciones a escala local, lo que a menudo ha supuesto pérdidas y ganancias de linajes evolutivos con características únicas. Ahora bien, ¿estas pérdidas y ganancias ocurren aleatoriamente a lo largo de la filogenia? Cuantificamos: los cambios temporales en la diversidad filogenética de las plantas; y la relación filogenética de las especies perdidas y ganadas en 2.672 parcelas de vegetación semipermanente en sotobosques templados europeos y re-muestreadas durante un período promedio de 40 años. Al controlar por las diferencias en la riqueza de especies, la diversidad filogenética aumentó ligeramente con el tiempo y entre parcelas. Además, las especies perdidas dentro de las parcelas exhibieron un mayor grado de relación filogenética que las especies ganadas. Esto implica que las especies ganadas se originaron en un conjunto de linajes evolutivos más diversos que las especies perdidas. Ciertos linajes también perdieron y ganaron más especies de las esperadas aleatoriamente: Ericaceae, Fabaceae y Orchidaceae experimentaron pérdidas y Amaranthaceae, Cyperaceae y Rosaceae mostraron ganancias. Las pérdidas y ganancias de especies no mostraron ninguna señal filogenética significativa en respuesta a los cambios en las condiciones macro-climáticas y la deposición de nitrógeno. A medida que se intensifica el cambio global antropogénico, los sotobosques temperados experimentan pérdidas y ganancias en ramas filogenéticas y estrategias ecológicas específicas, mientras que la diversidad filogenética media general permanece relativamente estable.


Assuntos
Biodiversidade , Nitrogênio , Filogenia , Mudança Climática , Florestas , Plantas
3.
Nat Commun ; 13(1): 7837, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36550094

RESUMO

Ungulate populations are increasing across Europe with important implications for forest plant communities. Concurrently, atmospheric nitrogen (N) deposition continues to eutrophicate forests, threatening many rare, often more nutrient-efficient, plant species. These pressures may critically interact to shape biodiversity as in grassland and tundra systems, yet any potential interactions in forests remain poorly understood. Here, we combined vegetation resurveys from 52 sites across 13 European countries to test how changes in ungulate herbivory and eutrophication drive long-term changes in forest understorey communities. Increases in herbivory were associated with elevated temporal species turnover, however, identities of winner and loser species depended on N levels. Under low levels of N-deposition, herbivory favored threatened and small-ranged species while reducing the proportion of non-native and nutrient-demanding species. Yet all these trends were reversed under high levels of N-deposition. Herbivores also reduced shrub cover, likely exacerbating N effects by increasing light levels in the understorey. Eutrophication levels may therefore determine whether herbivory acts as a catalyst for the "N time bomb" or as a conservation tool in temperate forests.


Assuntos
Florestas , Herbivoria , Plantas , Biodiversidade , Nitrogênio
4.
Transbound Emerg Dis ; 69(6): 3618-3623, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36219469

RESUMO

Hedgehog diphtheric disease (HDD), an ulcerative skin disease with a high fatality rate, is an emerging threat to European hedgehogs (Erinaceus europaeus). We explored the potential role of a panel of zoonotic pathogens in the presumed multifactorial nature of HDD in 188 hedgehogs from 3 wildlife rescue centres in Belgium. As expected, and with a prevalence of 67% in 57 hedgehogs with skin lesions, characteristic of HDD, the occurrence of Corynebacterium ulcerans was strongly associated with the disease. Remarkably, with a prevalence of 42% in affected animals, infections with Borrelia burgdorferi sensu lato were 3.92 times more likely to be detected in HDD (95% confidence interval: 1.650-9.880; p = .0024). Overall, 40 hedgehogs tested positive for the B. burgdorferi sensu lato complex, including Borrelia afzelii (n = 30), Borrelia bavariensis (n = 7) and Borrelia spielmanii (n = 7). Other widely occurring pathogens included Salmonella (prevalence of 19%, with three pulsed-field gel electrophoresis profiles) and Leptospira sp. (prevalence of 11%, including Leptospira interrogans and Leptospira borgpetersenii), but these were not associated with the occurrence of HDD. These findings show that hedgehogs in Belgium represent a significant reservoir of multiple zoonotic bacteria, of which toxigenic C. ulcerans and B. burgdorferi sensu lato are associated with widespread hedgehog skin pathology and mortality.


Assuntos
Grupo Borrelia Burgdorferi , Borrelia burgdorferi , Ixodes , Doença de Lyme , Animais , Ouriços/microbiologia , Bélgica/epidemiologia , Eletroforese em Gel de Campo Pulsado/veterinária , Doença de Lyme/microbiologia , Doença de Lyme/veterinária , Ixodes/microbiologia
5.
Sci Total Environ ; 812: 152560, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34952080

RESUMO

Tree species diversity promotes multiple ecosystem functions and services. However, little is known about how above- and belowground resource availability (light, nutrients, and water) and resource uptake capacity mediate tree species diversity effects on aboveground wood productivity and temporal stability of productivity in European forests and whether the effects differ between humid and arid regions. We used the data from six major European forest types along a latitudinal gradient to address those two questions. We found that neither leaf area index (a proxy for light uptake capacity), nor fine root biomass (a proxy for soil nutrient and water uptake capacity) was related to tree species richness. Leaf area index did, however, enhance productivity, but negatively affected stability. Productivity was further promoted by soil nutrient availability, while stability was enhanced by fine root biomass. We only found a positive effect of tree species richness on productivity in arid regions and a positive effect on stability in humid regions. This indicates a possible disconnection between productivity and stability regarding tree species richness effects. In other words, the mechanisms that drive the positive effects of tree species richness on productivity do not per se benefit stability simultaneously. Our findings therefore suggest that tree species richness effects are largely mediated by differences in climatic conditions rather than by differences in above- and belowground resource availability and uptake capacity at the regional scales.


Assuntos
Ecossistema , Árvores , Biodiversidade , Biomassa , Florestas , Solo
6.
Sci Total Environ ; 810: 151338, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34748832

RESUMO

Forest canopies buffer macroclimatic temperature fluctuations. However, we do not know if and how the capacity of canopies to buffer understorey temperature will change with accelerating climate change. Here we map the difference (offset) between temperatures inside and outside forests in the recent past and project these into the future in boreal, temperate and tropical forests. Using linear mixed-effect models, we combined a global database of 714 paired time series of temperatures (mean, minimum and maximum) measured inside forests vs. in nearby open habitats with maps of macroclimate, topography and forest cover to hindcast past (1970-2000) and to project future (2060-2080) temperature differences between free-air temperatures and sub-canopy microclimates. For all tested future climate scenarios, we project that the difference between maximum temperatures inside and outside forests across the globe will increase (i.e. result in stronger cooling in forests), on average during 2060-2080, by 0.27 ± 0.16 °C (RCP2.6) and 0.60 ± 0.14 °C (RCP8.5) due to macroclimate changes. This suggests that extremely hot temperatures under forest canopies will, on average, warm less than outside forests as macroclimate warms. This knowledge is of utmost importance as it suggests that forest microclimates will warm at a slower rate than non-forested areas, assuming that forest cover is maintained. Species adapted to colder growing conditions may thus find shelter and survive longer than anticipated at a given forest site. This highlights the potential role of forests as a whole as microrefugia for biodiversity under future climate change.


Assuntos
Mudança Climática , Florestas , Ecossistema , Microclima , Temperatura
7.
Science ; 370(6522)2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33303585

RESUMO

Schall and Heinrichs question our interpretation that the climatic debt in understory plant communities is locally modulated by canopy buffering. However, our results clearly show that the discrepancy between microclimate warming rates and thermophilization rates is highest in forests where canopy cover was reduced, which suggests that the need for communities to respond to warming is highest in those forests.


Assuntos
Florestas , Microclima , Plantas
8.
Science ; 370(6520)2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33243862

RESUMO

Bertrand et al question our interpretation about warming effects on the thermophilization in forest plant communities and propose an alternative way to analyze climatic debt. We show that microclimate warming is a better predictor than macroclimate warming for studying forest plant community responses to warming. Their additional analyses do not affect or change our interpretations and conclusions.


Assuntos
Florestas , Microclima , Plantas
9.
Science ; 368(6492): 772-775, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32409476

RESUMO

Climate warming is causing a shift in biological communities in favor of warm-affinity species (i.e., thermophilization). Species responses often lag behind climate warming, but the reasons for such lags remain largely unknown. Here, we analyzed multidecadal understory microclimate dynamics in European forests and show that thermophilization and the climatic lag in forest plant communities are primarily controlled by microclimate. Increasing tree canopy cover reduces warming rates inside forests, but loss of canopy cover leads to increased local heat that exacerbates the disequilibrium between community responses and climate change. Reciprocal effects between plants and microclimates are key to understanding the response of forest biodiversity and functioning to climate and land-use changes.


Assuntos
Florestas , Aquecimento Global , Microclima , Árvores/fisiologia , Europa (Continente)
10.
Nat Ecol Evol ; 4(6): 802-808, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32284580

RESUMO

Biodiversity time series reveal global losses and accelerated redistributions of species, but no net loss in local species richness. To better understand how these patterns are linked, we quantify how individual species trajectories scale up to diversity changes using data from 68 vegetation resurvey studies of seminatural forests in Europe. Herb-layer species with small geographic ranges are being replaced by more widely distributed species, and our results suggest that this is due less to species abundances than to species nitrogen niches. Nitrogen deposition accelerates the extinctions of small-ranged, nitrogen-efficient plants and colonization by broadly distributed, nitrogen-demanding plants (including non-natives). Despite no net change in species richness at the spatial scale of a study site, the losses of small-ranged species reduce biome-scale (gamma) diversity. These results provide one mechanism to explain the directional replacement of small-ranged species within sites and thus explain patterns of biodiversity change across spatial scales.


Assuntos
Ecossistema , Florestas , Biodiversidade , Europa (Continente) , Plantas
11.
Ecol Lett ; 23(4): 674-681, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32043741

RESUMO

Decades of research suggest that species richness depends on spatial characteristics of habitat patches, especially their size and isolation. In contrast, the habitat amount hypothesis predicts that (1) species richness in plots of fixed size (species density) is more strongly and positively related to the amount of habitat around the plot than to patch size or isolation; (2) habitat amount better predicts species density than patch size and isolation combined, (3) there is no effect of habitat fragmentation per se on species density and (4) patch size and isolation effects do not become stronger with declining habitat amount. Data on eight taxonomic groups from 35 studies around the world support these predictions. Conserving species density requires minimising habitat loss, irrespective of the configuration of the patches in which that habitat is contained.


Assuntos
Ecossistema
12.
New Phytol ; 226(1): 254-266, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31793000

RESUMO

A frequent hypothesis explaining the high susceptibility of many crops to pests and diseases is that, in the process of domestication, crops have lost defensive genes and traits against pests and diseases. Ecological theory predicts trade-offs whereby resistance and tolerance go at the cost of each other. We used wild relatives, early domesticated varieties, traditional local landraces and cultivars of tomato (Solanum lycopersicum) to test whether resistance and tolerance trade-offs were phylogenetically structured or varied according to degree of domestication. We exposed tomato genotypes to the aphid Macrosiphum euphorbiae, the cotton leafworm Spodoptera littoralis, the root knot nematode Meloidogyne incognita and two common insect-transmitted plant viruses, and reconstructed their phylogenetic relationships using Genotyping-by-Sequencing. We found differences in the performance and effect of pest and diseases but such differences were not related with domestication degree nor genetic relatedness, which probably underlie a complex genetic basis for resistance and indicate that resistance traits appeared at different stages and in unrelated genetic lineages. Still, wild and early domesticated accessions showed greater resistance to aphids and tolerance to caterpillars, nematodes and diseases than modern cultivars. Our findings help to understand how domestication affects plant-pest interactions and underline the importance of tolerance in crop breeding.


Assuntos
Afídeos , Domesticação , Solanum lycopersicum , Animais , Solanum lycopersicum/genética , Controle Biológico de Vetores , Filogenia , Melhoramento Vegetal
13.
Ecology ; 100(4): e02653, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30870588

RESUMO

Forest fragments in highly disturbed landscapes provide important ecosystem services ranging from acting as biodiversity reservoir to providing timber or regulating hydrology. Managing the tree species richness and composition of these fragments to optimize their functioning and the deliverance of multiple ecosystem services is of great practical relevance. However, both the strength and direction of tree species richness and tree species composition effects on forest ecosystem multifunctionality may depend on the landscape context in which these forest remnants are embedded. Taking advantage of an observatory network of 53 temperate forest plots varying in tree species richness, tree species composition, and fragmentation intensity we measured 24 ecosystem functions spanning multiple trophic levels and analyzed how tree species diversity-multifunctionality relationships changed with fragmentation intensity. Our results show that fragmentation generally increases multifunctionality and strengthens its positive relationship with diversity, possibly due to edge effects. In addition, different tree species combinations optimize functioning under different fragmentation levels. We conclude that management and restoration of forest fragments aimed at maximizing ecosystem multifunctionality should be tailored to the specific landscape context. As forest fragmentation will continue, tree diversity will become increasingly important to maintain forest functioning.


Assuntos
Ecossistema , Árvores , Biodiversidade
14.
Glob Chang Biol ; 24(4): 1722-1740, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29271579

RESUMO

The contemporary state of functional traits and species richness in plant communities depends on legacy effects of past disturbances. Whether temporal responses of community properties to current environmental changes are altered by such legacies is, however, unknown. We expect global environmental changes to interact with land-use legacies given different community trajectories initiated by prior management, and subsequent responses to altered resources and conditions. We tested this expectation for species richness and functional traits using 1814 survey-resurvey plot pairs of understorey communities from 40 European temperate forest datasets, syntheses of management transitions since the year 1800, and a trait database. We also examined how plant community indicators of resources and conditions changed in response to management legacies and environmental change. Community trajectories were clearly influenced by interactions between management legacies from over 200 years ago and environmental change. Importantly, higher rates of nitrogen deposition led to increased species richness and plant height in forests managed less intensively in 1800 (i.e., high forests), and to decreases in forests with a more intensive historical management in 1800 (i.e., coppiced forests). There was evidence that these declines in community variables in formerly coppiced forests were ameliorated by increased rates of temperature change between surveys. Responses were generally apparent regardless of sites' contemporary management classifications, although sometimes the management transition itself, rather than historic or contemporary management types, better explained understorey responses. Main effects of environmental change were rare, although higher rates of precipitation change increased plant height, accompanied by increases in fertility indicator values. Analysis of indicator values suggested the importance of directly characterising resources and conditions to better understand legacy and environmental change effects. Accounting for legacies of past disturbance can reconcile contradictory literature results and appears crucial to anticipating future responses to global environmental change.


Assuntos
Biodiversidade , Plantas/classificação , Clima , Europa (Continente) , Florestas , Atividades Humanas , Nitrogênio
15.
Ecol Lett ; 21(1): 31-42, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29143494

RESUMO

Humans require multiple services from ecosystems, but it is largely unknown whether trade-offs between ecosystem functions prevent the realisation of high ecosystem multifunctionality across spatial scales. Here, we combined a comprehensive dataset (28 ecosystem functions measured on 209 forest plots) with a forest inventory dataset (105,316 plots) to extrapolate and map relationships between various ecosystem multifunctionality measures across Europe. These multifunctionality measures reflected different management objectives, related to timber production, climate regulation and biodiversity conservation/recreation. We found that trade-offs among them were rare across Europe, at both local and continental scales. This suggests a high potential for 'win-win' forest management strategies, where overall multifunctionality is maximised. However, across sites, multifunctionality was on average 45.8-49.8% below maximum levels and not necessarily highest in protected areas. Therefore, using one of the most comprehensive assessments so far, our study suggests a high but largely unrealised potential for management to promote multifunctional forests.


Assuntos
Biodiversidade , Ecossistema , Florestas , Clima , Europa (Continente) , Humanos
16.
Annu Rev Plant Biol ; 68: 563-586, 2017 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-28125286

RESUMO

Plant communities have undergone dramatic changes in recent centuries, although not all such changes fit with the dominant biodiversity-crisis narrative used to describe them. At the global scale, future declines in plant species diversity are highly likely given habitat conversion in the tropics, although few extinctions have been documented for the Anthropocene to date (<0.1%). Nonnative species introductions have greatly increased plant species richness in many regions of the world at the same time that they have led to the creation of new hybrid polyploid species by bringing previously isolated congeners into close contact. At the local scale, conversion of primary vegetation to agriculture has decreased plant diversity, whereas other drivers of change-e.g., climate warming, habitat fragmentation, and nitrogen deposition-have highly context-dependent effects, resulting in a distribution of temporal trends with a mean close to zero. These results prompt a reassessment of how conservation goals are defined and justified.


Assuntos
Biodiversidade , Mudança Climática , Conservação dos Recursos Naturais , Plantas , Agricultura , Animais , Ecossistema , Extinção Biológica , Especiação Genética , Espécies Introduzidas , Nitrogênio/metabolismo , Nitrogênio/fisiologia
17.
Ecology ; 98(2): 583-590, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27864922

RESUMO

We present new data and analyses revealing fundamental flaws in a critique of two recent meta-analyses of local-scale temporal biodiversity change. First, the conclusion that short-term time series lead to biased estimates of long-term change was based on two errors in the simulations used to support it. Second, the conclusion of negative relationships between temporal biodiversity change and study duration was entirely dependent on unrealistic model assumptions, the use of a subset of data, and inclusion of one outlier data point in one study. Third, the finding of a decline in local biodiversity, after eliminating post-disturbance studies, is not robust to alternative analyses on the original data set, and is absent in a larger, updated data set. Finally, the undebatable point, noted in both original papers, that studies in the ecological literature are geographically biased, was used to cast doubt on the conclusion that, outside of areas converted to croplands or asphalt, the distribution of biodiversity trends is centered approximately on zero. Future studies may modify conclusions, but at present, alternative conclusions based on the geographic-bias argument rely on speculation. In sum, the critique raises points of uncertainty typical of all ecological studies, but does not provide an evidence-based alternative interpretation.


Assuntos
Biodiversidade , Ecologia , Incerteza
18.
Ecol Evol ; 7(24): 10861-10870, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29299264

RESUMO

Light is a key resource for plant growth and is of particular importance in forest ecosystems, because of the strong vertical structure leading to successive light interception from canopy to forest floor. Tree species differ in the quantity and heterogeneity of light they transmit. We expect decreases in both the quantity and spatial heterogeneity of light transmittance in mixed stands relative to monocultures, due to complementarity effects and niche filling. We tested the degree to which tree species identity and diversity affected, via differences in tree and shrub cover, the spatiotemporal variation in light availability before, during, and after leaf expansion. Plots with different combinations of three tree species with contrasting light transmittance were selected to obtain a diversity gradient from monocultures to three species mixtures. Light transmittance to the forest floor was measured with hemispherical photography. Increased tree diversity led to increased canopy packing and decreased spatial light heterogeneity at the forest floor in all of the time periods. During leaf expansion, light transmittance did differ between the different tree species and timing of leaf expansion might thus be an important source of variation in light regimes for understory plant species. Although light transmittance at the canopy level after leaf expansion was not measured directly, it most likely differed between tree species and decreased in mixtures due to canopy packing. A complementary shrub layer led, however, to similar light levels at the forest floor in all species combinations in our plots. Synthesis. We find that a complementary shrub layer exploits the higher light availability in particular tree species combinations. Resources at the forest floor are thus ultimately determined by the combined effect of the tree and shrub layer. Mixing species led to less heterogeneity in the amount of light, reducing abiotic niche variability.

19.
Parasitology ; 143(10): 1310-9, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27173094

RESUMO

Lyme disease is caused by bacteria of the Borrelia burgdorferi genospecies complex and transmitted by Ixodid ticks. In North America only one pathogenic genospecies occurs, in Europe there are several. According to the dilution effect hypothesis (DEH), formulated in North America, nymphal infection prevalence (NIP) decreases with increasing host diversity since host species differ in transmission potential. We analysed Borrelia infection in nymphs from 94 forest stands in Belgium, which are part of a diversification gradient with a supposedly related increasing host diversity: from pine stands without to oak stands with a shrub layer. We expected changing tree species and forest structure to increase host diversity and decrease NIP. In contrast with the DEH, NIP did not differ between different forest types. Genospecies diversity however, and presumably also host diversity, was higher in oak than in pine stands. Infected nymphs tended to harbour Borrelia afzelii infection more often in pine stands while Borrelia garinii and Borrelia burgdorferi ss. infection appeared to be more prevalent in oak stands. This has important health consequences, since the latter two cause more severe disease manifestations. We show that the DEH must be nuanced for Europe and should consider the response of multiple pathogenic genospecies.


Assuntos
Vetores Aracnídeos/parasitologia , Borrelia burgdorferi/fisiologia , Florestas , Ixodes/parasitologia , Doença de Lyme/epidemiologia , Doença de Lyme/microbiologia , Animais , Vetores Aracnídeos/fisiologia , Bélgica/epidemiologia , Biodiversidade , Borrelia burgdorferi/genética , Europa (Continente)/epidemiologia , Ixodes/fisiologia , Doença de Lyme/transmissão , América do Norte/epidemiologia , Ninfa/microbiologia , Pinus/microbiologia , Reação em Cadeia da Polimerase , Quercus/microbiologia
20.
Nat Commun ; 7: 11109, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-27010076

RESUMO

There is considerable evidence that biodiversity promotes multiple ecosystem functions (multifunctionality), thus ensuring the delivery of ecosystem services important for human well-being. However, the mechanisms underlying this relationship are poorly understood, especially in natural ecosystems. We develop a novel approach to partition biodiversity effects on multifunctionality into three mechanisms and apply this to European forest data. We show that throughout Europe, tree diversity is positively related with multifunctionality when moderate levels of functioning are required, but negatively when very high function levels are desired. For two well-known mechanisms, 'complementarity' and 'selection', we detect only minor effects on multifunctionality. Instead a third, so far overlooked mechanism, the 'jack-of-all-trades' effect, caused by the averaging of individual species effects on function, drives observed patterns. Simulations demonstrate that jack-of-all-trades effects occur whenever species effects on different functions are not perfectly correlated, meaning they may contribute to diversity-multifunctionality relationships in many of the world's ecosystems.


Assuntos
Biodiversidade , Florestas , Europa (Continente) , Modelos Teóricos , Especificidade da Espécie , Árvores/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA