Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Pharmaceuticals (Basel) ; 16(10)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37895852

RESUMO

BACKGROUND: Myocardial infarction is one of the leading causes of mortality worldwide; hence, there is an urgent need to discover novel cardioprotective strategies. Kynurenic acid (KYNA), a metabolite of the kynurenine pathway, has been previously reported to have cardioprotective effects. However, the mechanisms by which KYNA may be protective are still unclear. The current study addressed this issue by investigating KYNA's cardioprotective effect in the context of myocardial ischemia/reperfusion. METHODS: H9C2 cells and rats were exposed to hypoxia/reoxygenation or myocardial infarction, respectively, in the presence or absence of KYNA. In vitro, cell death was quantified using flow cytometry analysis of propidium iodide staining. In vivo, TTC-Evans Blue staining was performed to evaluate infarct size. Mitochondrial respiratory chain complex activities were measured using spectrophotometry. Protein expression was evaluated by Western blot, and mRNA levels by RT-qPCR. RESULTS: KYNA treatment significantly reduced H9C2-relative cell death as well as infarct size. KYNA did not exhibit any effect on the mitochondrial respiratory chain complex activity. SOD2 mRNA levels were increased by KYNA. A decrease in p62 protein levels together with a trend of increase in PARK2 may mark a stimulation of mitophagy. Additionally, ERK1/2, Akt, and FOXO3α phosphorylation levels were significantly reduced after the KYNA treatment. Altogether, KYNA significantly reduced myocardial ischemia/reperfusion injuries in both in vitro and in vivo models. CONCLUSION: Here we show that KYNA-mediated cardioprotection was associated with enhanced mitophagy and antioxidant defense. A deeper understanding of KYNA's cardioprotective mechanisms is necessary to identify promising novel therapeutic targets and their translation into the clinical arena.

2.
Int J Mol Sci ; 24(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298493

RESUMO

Cyclosporine A (CsA) preconditioning is known to target mitochondrial permeability transition pore and protect renal function after ischemia reperfusion (IR). The upregulation of heat-shock protein 70 (Hsp70) expression after CsA injection is thought to be associated with renal protection. The aim of this study was to test the effect of Hsp70 expression on kidney and mitochondria functions after IR. Mice underwent a right unilateral nephrectomy and 30 min of left renal artery clamping, performed after CsA injection and/or administration of the Hsp70 inhibitor. Histological score, plasma creatinine, mitochondrial calcium retention capacity, and oxidative phosphorylation were assessed after 24 h of reperfusion. In parallel, we used a model of hypoxia reoxygenation on HK2 cells to modulate Hsp70 expression using an SiRNA or a plasmid. We assessed cell death after 18 h of hypoxia and 4 h of reoxygenation. CsA significantly improved renal function, histological score, and mitochondrial functions compared to the ischemic group but the inhibition of Hsp70 repealed the protection afforded by CsA injection. In vitro, Hsp70 inhibition by SiRNA increased cell death. Conversely, Hsp70 overexpression protected cells from the hypoxic condition, as well as the CsA injection. We did not find a synergic association between Hsp70 expression and CsA use. We demonstrated Hsp70 could modulate mitochondrial functions to protect kidneys from IR. This pathway may be targeted by drugs to provide new therapeutics to improve renal function after IR.


Assuntos
Ciclosporina , Traumatismo por Reperfusão , Animais , Camundongos , Ciclosporina/farmacologia , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Hipóxia/metabolismo , Isquemia/metabolismo , Rim/metabolismo , Mitocôndrias/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo , Humanos
3.
Life (Basel) ; 13(3)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36983862

RESUMO

RATIONALE: Mitochondria are key organelles involved in cell survival and death during the acute phenomena of myocardial ischemia-reperfusion (i.e., myocardial infarction). To investigate the functions of isolated mitochondria such as calcium retention capacity, oxidative phosphorylation, and reactive oxygen species (ROS) production, already established methods are based on extramitochondrial measurements of the whole mitochondria population. OBJECTIVE: The aim of this study was to develop a reliable and well-characterized method for multiparametric analysis of isolated single mitochondrion by flow cytometry (FC) in the context of myocardial infarction. The advantage of FC is the possibility to give a simultaneous analysis of morphological parameters (side and forward scatters: SSC and FSC) for each mitochondrion, combined with intramitochondrial measurements of several biological markers, such as ROS production or membrane potential (Δφm), using specific fluorescent probes. METHODS AND RESULTS: For this study, a rat model of ischemia-reperfusion and a protective approach of post-conditioning using low reperfusion pressure was used. Thanks to the use of specific probes (NAO, MTR, TMRM, DilC1, and DHR123) combined with flow cytometry, we propose a method: (i) to identify mitochondrial populations of interest based on quality criteria (NAO/TMRM double staining); (ii) to monitor their morphological criteria, especially during swelling due to calcium overload; and (iii) to compare mitochondrial functions (membrane potential and ROS production) in different experimental groups. Applied to mitochondria from ischemic hearts, these measurements revealed that individual mitochondria are altered and that cardioprotection by low-pressure reperfusion reduces damage, as expected. CONCLUSIONS: Our results highlight FC as a reliable and sensitive method to investigate changes in mitochondrial functions and morphology in pathological conditions that disrupts their activity such as the case in ischemia-reperfusion. This methodological approach can be extended to other pathologies involving mitochondrial dysfunctions. Moreover, FC offers the possibility to work with very small amounts of isolated mitochondria, a factor that may limit the use of classical methods.

4.
Int J Mol Sci ; 23(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36361649

RESUMO

Heart transplantation is facing a shortage of grafts. Donation after Circulatory Death (DCD) would constitute a new potential of available organs. In the present work, we aimed to evaluate whether Postconditioning (ischemic or with ciclosporin-A (CsA)) could reduce ischemia-reperfusion injury in a cardiac arrest model when applied at the start of reperfusion or after a delay. An isolated rat heart model was used as a model of DCD. Hearts were submitted to a cardiac arrest of 40 min of global warm ischemia (37 °C) followed by 3 h of 4 °C-cold preservation, then 60 min reperfusion. Hearts were randomly allocated into the following groups: control, ischemic postconditioning (POST, consisting of two episodes each of 30 s ischemia and 30 s reperfusion at the onset of reperfusion), and CsA group (CsA was perfused at 250 nM for 10 min at reperfusion). In respective subgroups, POST and CsA were applied after a delay of 3, 10, and 20 min. Necrosis was lower in CsA and POST versus controls (p < 0.01) whereas heart functions were improved (p < 0.01). However, while the POST lost its efficacy if delayed beyond 3 min of reperfusion, CsA treatment surprisingly showed a reduction of necrosis even if applied after a delay of 3 and 10 min of reperfusion (p < 0.01). This cardioprotection by delayed CsA application correlated with better functional recovery and higher mitochondrial respiratory index. Furthermore, calcium overload necessary to induce mitochondrial permeability transition pore (MPTP) opening was similar in all cardioprotection groups, suggesting a crucial role of MPTP in this delayed protection of DCD hearts.


Assuntos
Parada Cardíaca , Traumatismo por Reperfusão Miocárdica , Animais , Ratos , Ciclosporina/farmacologia , Parada Cardíaca/tratamento farmacológico , Poro de Transição de Permeabilidade Mitocondrial , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Necrose
5.
Int J Mol Sci ; 23(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36012493

RESUMO

Renal ischemia-reperfusion (IR) injury can lead to acute kidney injury, increasing the risk of developing chronic kidney disease. We hypothesized that mild therapeutic hypothermia (mTH), 34 °C, applied during ischemia could protect the function and structure of kidneys against IR injuries in mice. In vivo bilateral renal IR led to an increase in plasma urea and acute tubular necrosis at 24 h prevented by mTH. One month after unilateral IR, kidney atrophy and fibrosis were reduced by mTH. Evaluation of mitochondrial function showed that mTH protected against IR-mediated mitochondrial dysfunction at 24 h, by preserving CRC and OX-PHOS. mTH completely abrogated the IR increase of plasmatic IL-6 and IL-10 at 24 h. Acute tissue inflammation was decreased by mTH (IL-6 and IL1-ß) in as little as 2 h. Concomitantly, mTH increased TNF-α expression at 24 h. One month after IR, mTH increased TNF-α mRNA expression, and it decreased TGF-ß mRNA expression. We showed that mTH alleviates renal dysfunction and damage through a preservation of mitochondrial function and a modulated systemic and local inflammatory response at the acute phase (2-24 h). The protective effect of mTH is maintained in the long term (1 month), as it diminished renal atrophy and fibrosis, and mitigated chronic renal inflammation.


Assuntos
Injúria Renal Aguda , Hipotermia Induzida , Traumatismo por Reperfusão , Injúria Renal Aguda/genética , Animais , Atrofia/patologia , Fibrose , Inflamação/metabolismo , Interleucina-6/metabolismo , Isquemia/metabolismo , Rim/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , RNA Mensageiro/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Fator de Necrose Tumoral alfa/metabolismo
6.
PLoS One ; 16(3): e0248554, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33765018

RESUMO

Mitochondrial dynamics is a possible modulator of myocardial ischemia/reperfusion injuries (IRI). We previously reported that mice partially deficient in the fusion protein OPA1 exhibited higher IRI. Therefore, we investigated whether deficiency in the fission protein DRP1 encoded by Dnm1l gene would affect IRI in Dnm1l+/- mouse. After baseline characterization of the Dnm1l+/- mice heart, using echocardiography, electron microscopy, and oxygraphy, 3-month-old Dnm1l+/- and wild type (WT) mice were exposed to myocardial ischemia/reperfusion (I/R). The ischemic area-at-risk (AAR) and area of necrosis (AN) were delimited, and the infarct size was expressed by AN/AAR. Proteins involved in mitochondrial dynamics and autophagy were analyzed before and after I/R. Mitochondrial permeability transition pore (mPTP) opening sensitivity was assessed after I/R. Heart weight and left ventricular function were not significantly different in 3-, 6- and 12-month-old Dnm1l+/- mice than in WT. The cardiac DRP1 protein expression levels were 60% lower, whereas mitochondrial area and lipid degradation were significantly higher in Dnm1l+/- mice than in WT, though mitochondrial respiratory parameters and mPTP opening did not significantly differ. Following I/R, the infarct size was significantly smaller in Dnm1l+/- mice than in WT (34.6±3.1% vs. 44.5±3.3%, respectively; p<0.05) and the autophagic markers, LC3 II and P62 were significantly increased compared to baseline condition in Dnm1l+/- mice only. Altogether, data indicates that increasing fusion by means of Dnm1l deficiency was associated with protection against IRI, without alteration in cardiac or mitochondrial functions at basal conditions. This protection mechanism due to DRP1 haploinsufficiency increases the expression of autophagic markers.


Assuntos
Dinaminas/fisiologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Animais , Dinaminas/genética , Haploinsuficiência , Masculino , Camundongos , Camundongos Knockout , Dinâmica Mitocondrial
7.
Cells ; 9(12)2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255741

RESUMO

Following a prolonged exposure to hypoxia-reoxygenation, a partial disruption of the ER-mitochondria tethering by mitofusin 2 (MFN2) knock-down decreases the Ca2+ transfer between the two organelles limits mitochondrial Ca2+ overload and prevents the Ca2+-dependent opening of the mitochondrial permeability transition pore, i.e., limits cardiomyocyte cell death. The impact of the metabolic changes resulting from the alteration of this Ca2+crosstalk on the tolerance to hypoxia-reoxygenation injury remains partial and fragmented between different field of expertise. >In this study, we report that MFN2 loss of function results in a metabolic switch driven by major modifications in energy production by mitochondria. During hypoxia, mitochondria maintain their ATP concentration and, concomitantly, the inner membrane potential by importing cytosolic ATP into mitochondria through an overexpressed ANT2 protein and by decreasing the expression and activity of the ATP hydrolase via IF1. This adaptation further blunts the detrimental hyperpolarisation of the inner mitochondrial membrane (IMM) upon re-oxygenation. These metabolic changes play an important role to attenuate cell death during a prolonged hypoxia-reoxygenation challenge.


Assuntos
Translocador 2 do Nucleotídeo Adenina/metabolismo , Trifosfato de Adenosina/metabolismo , Hipóxia/metabolismo , Mitocôndrias/metabolismo , Animais , Cálcio/metabolismo , Morte Celular/fisiologia , Linhagem Celular , Potencial da Membrana Mitocondrial/fisiologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/metabolismo , Miócitos Cardíacos/metabolismo , Ratos
8.
PLoS One ; 12(11): e0188202, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29166391

RESUMO

BACKGROUND: Recently, it was shown that interleukin-17A (IL-17A) is involved in the pathophysiology of reperfusion injury and associated with infarct size (IS) in experimental models of myocardial infarction. Our aim was to evaluate whether the IL-17A serum level and the IL-17A active fraction was correlated with IS in humans. METHODS: 101 patients presenting with a ST-elevated Myocardial Infarction (STEMI) referred for primary percutaneous coronary intervention (PPCI) and 10 healthy controls were included. For each participant, blood samples at admission (H0) and 4 hours after admission (H4) were collected. IL-17A serum levels were assessed using ELISA and the active fraction was assessed with a functional test. IS was determined by peak troponin and peak CK levels for every patient and by contrast-enhanced cardiac magnetic resonance (ce-CMR) for 20 patients. RESULTS: The IL-17A serum level was significantly increased in STEMI patients compared to healthy controls, (0.9 pg/mL IQR [0.0-3.2] at H0 and 1.0 pg/mL IQR [0.2-2.8] at H4 versus 0.2 pg/mL IQR [0.0-0.7] for healthy controls; p<0.005). At either time points, IL-17A levels did not correlate with IS as measured by peak troponin, peak CK pr ce-CMR. Also, no correlation was found between the active fraction of IL-17A and IS. CONCLUSION: Serum IL-17A level is significantly increased in patients at the early phase of acute MI compared to healthy controls. However, the level of IL-17A in the early hours after reperfusion does not correlate with IS.


Assuntos
Interleucina-17/sangue , Reperfusão Miocárdica , Infarto do Miocárdio com Supradesnível do Segmento ST/sangue , Infarto do Miocárdio com Supradesnível do Segmento ST/patologia , Biomarcadores/sangue , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Hospitalização , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inflamação/sangue , Inflamação/complicações , Inflamação/patologia , Cinética , Masculino , Pessoa de Meia-Idade , Neutrófilos/metabolismo
9.
PLoS One ; 12(8): e0182358, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28796779

RESUMO

BACKGROUND: There is experimental evidence that lethal ischemia-reperfusion injury (IRI) is largely due to mitochondrial permeability transition pore (mPTP) opening, which can be prevented by cyclosporine A (CsA). The aim of our study is to show that a higher dose of CsA (10 mg/kg) injected just before ischemia or a lower dose of CsA (3 mg/kg) injected further in advance of ischemia (1 h) protects the kidneys and improves mitochondrial function. METHODS: All mice underwent a right unilateral nephrectomy followed by 30 min clamping of the left renal artery. Mice in the control group did not receive any pharmacological treatment. Mice in the three groups treated by CsA were injected at different times and with different doses, namely 3 mg/kg 1 h or 10 min before ischemia or 10 mg/kg 10 min before ischemia. After 24 h of reperfusion, the plasma creatinine level were measured, the histological score was assessed and mitochondria were isolated to calculate the calcium retention capacity (CRC) and level of oxidative phosphorylation. RESULTS: Mortality and renal function was significantly higher in the CsA 10 mg/kg-10 min and CsA 3mg/kg-1 h groups than in the CsA 3mg/kg-10 min group. Likewise, the CRC was significantly higher in the former two groups than in the latter, suggesting that the improved renal function was due to a longer delay in the opening of the mPTP. Oxidative phosphorylation levels were also higher 24 h after reperfusion in the protected groups. CONCLUSIONS: Our results suggest that the protection afforded by CsA is likely limited by its availability. The dose and timing of the injections are therefore crucial to ensure that the treatment is effective, but these findings may prove challenging to apply in practice.


Assuntos
Injúria Renal Aguda/prevenção & controle , Inibidores de Calcineurina/administração & dosagem , Ciclosporina/administração & dosagem , Rim/irrigação sanguínea , Traumatismo por Reperfusão/prevenção & controle , Animais , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Relação Dose-Resposta a Droga , Esquema de Medicação , Avaliação Pré-Clínica de Medicamentos , Rim/efeitos dos fármacos , Rim/patologia , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/antagonistas & inibidores , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial
10.
EMBO Mol Med ; 9(6): 770-785, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28396567

RESUMO

PIKfyve is an evolutionarily conserved lipid kinase that regulates pleiotropic cellular functions. Here, we identify PIKfyve as a key regulator of cardiometabolic status and mitochondrial integrity in chronic diet-induced obesity. In vitro, we show that PIKfyve is critical for the control of mitochondrial fragmentation and hypertrophic and apoptotic responses to stress. We also provide evidence that inactivation of PIKfyve by the selective inhibitor STA suppresses excessive mitochondrial ROS production and apoptosis through a SIRT3-dependent pathway in cardiomyoblasts. In addition, we report that chronic STA treatment improves cardiometabolic profile in a mouse model of cardiomyopathy linked to obesity. We provide evidence that PIKfyve inhibition reverses obesity-induced cardiac mitochondrial damage and apoptosis by activating SIRT3. Furthermore, treatment of obese mice with STA improves left ventricular function and attenuates cardiac hypertrophy. In contrast, STA is not able to reduce isoproterenol-induced cardiac hypertrophy in SIRT3.KO mice. Altogether, these results unravel a novel role for PIKfyve in obesity-associated cardiomyopathy and provide a promising therapeutic strategy to combat cardiometabolic complications in obesity.


Assuntos
Apoptose , Hipertrofia/patologia , Miocárdio/patologia , Inibidores de Fosfoinositídeo-3 Quinase , Sirtuína 3/metabolismo , Animais , Cardiomiopatias/patologia , Linhagem Celular , Modelos Animais de Doenças , Camundongos Knockout , Camundongos Obesos , Obesidade/complicações , Fosfatidilinositol 3-Quinases
11.
J Mol Cell Cardiol ; 78: 80-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25281838

RESUMO

Reperfusion is characterized by a deregulation of ion homeostasis and generation of reactive oxygen species that enhance the ischemia-related tissue damage culminating in cell death. The mitochondrial permeability transition pore (mPTP) has been established as an important mediator of ischemia-reperfusion (IR)-induced necrotic cell death. Although a handful of proteins have been proposed to contribute in mPTP induction, cyclophilin D (CypD) remains its only bona fide regulatory component. In this review we summarize existing knowledge on the involvement of CypD in mPTP formation in general and its relevance to cardiac IR injury in specific. Moreover, we provide insights of recent advancements on additional functions of CypD depending on its interaction partners and post-translational modifications. Finally we emphasize the therapeutic strategies targeting CypD in myocardial IR injury. This article is part of a Special Issue entitled "Mitochondria: From Basic Mitochondrial Biology to Cardiovascular Disease".


Assuntos
Cálcio/metabolismo , Ciclofilinas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Animais , Proteínas de Transporte/metabolismo , Morte Celular , Peptidil-Prolil Isomerase F , Humanos , Mitocôndrias Cardíacas/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Ligação Proteica , Processamento de Proteína Pós-Traducional , Transdução de Sinais
12.
Physiol Behav ; 104(5): 893-9, 2011 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-21658398

RESUMO

Lou/C rats, an inbred strain of Wistar origin, remain lean throughout life and therefore represent a remarkable model of obesity resistance. To date, the exact mechanisms responsible for the leanness of Lou/C rats remain unknown. The aim of the present study was to investigate whether the leanness of Lou/C rats relies on increased thermogenic capacities in brown adipose tissue (BAT). Results showed that although daily energy expenditure was higher in Lou/C than in Wistar rats, BAT thermogenic capacity was not enhanced in Lou/C rats kept at thermoneutrality as demonstrated by reduced thermogenic response to norepinephrine in vivo, similar oxidative activity of BAT isolated mitochondria in vitro, similar levels of UCP1 mRNA and lower abundance of UCP1 protein in interscapular BAT depots. Relative abundance of ß3-adrenergic receptor mRNA was lower in Lou/C BAT while that of GLUT4, FABP or CPT1 was not altered. Activity-related energy expenditure was however considerably increased at thermoneutrality as Lou/C rats demonstrated an impressively high spontaneous running activity in voluntary running wheels. Prolonged cold-exposure (4 °C) depressed the spontaneous running activity of Lou/C rats while BAT thermogenic capacity was increased as reflected by rises in BAT mass, oxidative activity and UCP1 expression. It is concluded that the leanness of Lou/C rats cannot be ascribed to higher thermogenic capacity of brown fat but rather to, at least in part, increased locomotor activity. BAT is not deficient in this rat strain as it can be stimulated by cold exposure when locomotor activity is reduced suggesting some substitution between these thermogenic processes.


Assuntos
Tecido Adiposo Marrom/metabolismo , Regulação da Temperatura Corporal/fisiologia , Obesidade/metabolismo , Magreza/metabolismo , Magreza/patologia , Tecido Adiposo Marrom/ultraestrutura , Análise de Variância , Animais , Regulação da Temperatura Corporal/efeitos dos fármacos , Peso Corporal , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Comportamento Exploratório , Regulação da Expressão Gênica/efeitos dos fármacos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Masculino , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Norepinefrina/farmacologia , RNA Mensageiro/genética , Ratos , Ratos Mutantes , Ratos Wistar , Temperatura , Fatores de Tempo , Proteína Desacopladora 1
13.
Endocrinology ; 149(4): 1490-8, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18187546

RESUMO

AMP-activated protein kinase (AMPK) is an energy-sensing enzyme that is activated by an increased AMP/ATP ratio. AMPK is now well recognized to induce glucose uptake in skeletal muscle and heart. 5-Aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) is phosphorylated to form the AMP analog ZMP, which activates AMPK. Its effects on glucose transport appear to be tissue specific. The purpose of our study was to examine the effect of AICAR on insulin-induced glucose uptake in adult rat ventricular cardiomyocytes. We studied isolated adult rat ventricular cardiomyocytes treated or not with the AMPK activators AICAR and metformin and, subsequently, with insulin or not. Insulin action was investigated by determining deoxyglucose uptake, insulin receptor substrate-1- or -2-associated phosphatidylinositol 3-kinase activity and protein kinase B (PKB) cascade using antibodies to PKB, glycogen synthase kinase-3, and Akt substrate of 160 kDa. Intracellular pH was evaluated using the fluorescent pH-sensitive dye 2',7'-bis (2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF) and Na(+)/H(+) exchanger 1 (NHE1) activity was assessed using the NH(4)(+) prepulse method. Our key findings are as follows. AICAR and metformin enhance insulin signaling downstream of PKB. Metformin potentiates insulin-induced glucose uptake, but surprisingly, AICAR inhibits both basal and insulin-induced glucose uptake. Moreover, we found that AICAR decreases intracellular pH, via inhibition of NHE1. In conclusion, AMPK potentiates insulin signaling downstream of PKB in isolated cardiac myocytes, consistent with findings in the heart in vivo. Furthermore, AICAR inhibits basal and insulin-induced glucose uptake in isolated cardiac myocytes via the inhibition of NHE1 and the subsequent reduction of intracellular pH. Importantly, AICAR exerts these effects in a manner independent of AMPK activation.


Assuntos
Aminoimidazol Carboxamida/análogos & derivados , Glucose/metabolismo , Miócitos Cardíacos/metabolismo , Ribonucleotídeos/farmacologia , Trocadores de Sódio-Hidrogênio/antagonistas & inibidores , Adenilato Quinase/fisiologia , Aminoimidazol Carboxamida/farmacologia , Animais , Ventrículos do Coração , Concentração de Íons de Hidrogênio , Masculino , Metformina/farmacologia , Ratos , Ratos Sprague-Dawley , Trocador 1 de Sódio-Hidrogênio
14.
Circ Res ; 99(12): 1347-54, 2006 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-17082476

RESUMO

Earlier we identified a survival role for NF-kappaB in ventricular myocytes, however, the underlying mechanism was undefined. In this report we provide new mechanistic evidence that the hypoxia-inducible death factor BNIP3 is transcriptionally silenced by NF-kappaB through a mechanism that involves the cooperative actions of HDAC1. Activation of the NF-kappaB signaling pathway in ventricular myocytes suppressed basal and hypoxia-inducible BNIP3 gene activity. Basal Bnip3 gene expression was increased in cells derived from p65(-/-) deficient mice. The histone deacetylase (HDAC) inhibitor Trichostatin A (TSA 10 nM) suppressed the inhibitory actions of NF-kappaB on Bnip3 gene transcription. Basal and hypoxia- induced Bnip3 transcription was repressed by wild type but not a catalytically inactive mutant of HDAC1. Immunoprecipitation assays verified interaction of HDAC1 with wild type p65 NF-kappaB and mutations of p65 defective for transactivation in ventricular myocytes. Deletion analysis revealed canonical NF-kappaB elements within the Bnip3 promoter to be important for repression of Bnip3 gene expression by HDAC1. Further, the ability of HDAC1 to repress Bnip3 gene transcription was lost in cells derived from p65(-/-) deficient mice but was restored by repletion of p65 NF-kappaB into p65(-/-) cells. Mutations of p65 NF-kappaB defective for DNA binding but not for transactivation abrogated the inhibitory actions of HDAC1 on the Bnip3 gene transcription. Together, our findings provide new mechanistic insight into the cytoprotective actions conferred by NF-kappaB that extend to the active transcriptional repression of the death factor Bnip3 through a mechanism that is mutually dependent on HDAC-1.


Assuntos
Inativação Gênica/fisiologia , Histona Desacetilases/metabolismo , Proteínas de Membrana/genética , Miócitos Cardíacos/fisiologia , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas/genética , Animais , Apoptose/fisiologia , Células Cultivadas , Ventrículos do Coração/citologia , Histona Desacetilase 1 , Proteínas Mitocondriais , Miócitos Cardíacos/citologia , Regiões Promotoras Genéticas/fisiologia , Ratos , Ratos Sprague-Dawley , Transcrição Gênica/fisiologia
15.
J Pharmacol Exp Ther ; 317(3): 1036-43, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16513848

RESUMO

Although inhibition of Na+/H+ exchanger isoform 1 (NHE-1) reduces cardiomyocyte hypertrophy, the mechanisms underlying this effect are not known. Recent evidence suggests that this may be associated with improved mitochondrial function. To understand the mechanistic bases for mitochondrial involvement in the antihypertrophic effect of NHE-1 inhibition, we examined the effect of the NHE-1-specific inhibitor N-[2-methyl-4,5-bis(methylsulphonyl)-benzoyl]-guanidine, hydrochloride (EMD, EMD87580; 5 microM) on the hypertrophic phenotype, mitogen-activated protein kinase (MAPK) activity, mitochondrial membrane potential (Deltapsim), permeability transition (MPT) pore opening, and superoxide generation in phenylephrine (PE)-treated neonatal rat cardiomyocytes. EMD significantly suppressed markers of cell hypertrophy, including cell surface area and gene expression of atrial natriuretic peptide and alpha-skeletal actin. EMD inhibited the PE-induced MPT pore opening, prevented the loss in Deltapsim, and attenuated superoxide generation induced by PE. Moreover, the activation of p38 MAPK (p38) and extracellular signal-regulated kinase (ERK) 1/2 MAPKs induced by PE was significantly attenuated in the presence of EMD as well as the antioxidant catalase. To examine the role of MPT and mitochondrial Ca2+ uniport in parallel with EMD, the effects of cyclosporin A (0.2 microM) and ruthenium red (10 microM) were evaluated. Both agents significantly attenuated PE-induced hypertrophy and inhibited both mitochondrial dysfunction and p38 and ERK1/2 MAPK activation. Our results suggest a novel mechanism for attenuation of the hypertrophic phenotype by NHE-1 inhibition that is mediated by a reduction in PE-induced MAPK activation and superoxide production secondary to improved mitochondrial integrity.


Assuntos
Tamanho Celular , Mitocôndrias Cardíacas/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Miócitos Cardíacos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Trocadores de Sódio-Hidrogênio/antagonistas & inibidores , Animais , Western Blotting , Tamanho Celular/efeitos dos fármacos , Células Cultivadas , Guanidinas/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/fisiologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sulfonas/farmacologia
16.
Circulation ; 112(24): 3777-85, 2005 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-16344406

RESUMO

BACKGROUND: A survival role for the transcription factor nuclear factor-kappaB (NF-kappaB) in ventricular myocytes has been reported; however, the underlying mechanism is undefined. In this report we provide new mechanistic evidence that survival signals conferred by NF-kappaB impinge on the hypoxia-inducible death factor BNIP3. METHODS AND RESULTS: Activation of the NF-kappaB signaling pathway by IKKbeta in ventricular myocytes suppressed mitochondrial permeability transition pore (PTP) opening and cell death provoked by BNIP3. Expression of IKKbeta or p65 NF-kappaB suppressed basal and hypoxia-inducible BNIP3 gene activity. Deletion analysis of the BNIP3 promoter revealed the NF-kappaB elements to be crucial for inhibiting basal and inducible BNIP3 gene activity. Cells derived from p65(-/-)-deficient mice or ventricular myocytes rendered defective for NF-kappaB signaling with a nonphosphorylative IkappaB exhibited increased basal BNIP3 gene expression, mitochondrial PTP, and cell death. Genetic or functional ablation of the BNIP3 gene in NF-kappaB-defective myocytes rescued them from mitochondrial defects and cell death. CONCLUSIONS: The data provide new compelling evidence that NF-kappaB suppresses mitochondrial defects and cell death of ventricular myocytes through a mechanism that transcriptionally silences the death gene BNIP3. Collectively, our data provide new mechanistic insight into the mode by which NF-kappaB suppresses cell death and identify BNIP3 as a key transcriptional target for NF-kappaB-regulated expression in ventricular myocytes.


Assuntos
Inativação Gênica , Ventrículos do Coração/citologia , Proteínas de Membrana/genética , Miócitos Cardíacos/metabolismo , NF-kappa B/fisiologia , Proteínas Proto-Oncogênicas/genética , Animais , Sobrevivência Celular , Hipóxia , Quinase I-kappa B/farmacologia , Canais Iônicos/análise , Mitocôndrias Cardíacas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial , Poro de Transição de Permeabilidade Mitocondrial , Proteínas Mitocondriais , Miócitos Cardíacos/citologia , Ratos , Ratos Sprague-Dawley , Transcrição Gênica
18.
Circulation ; 110(25): 3795-802, 2004 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-15596562

RESUMO

BACKGROUND: Oxygen deprivation for prolonged periods of time provokes cardiac cell death and ventricular dysfunction. Preventing inappropriate cardiac cell death in patients with ischemic heart disease would be of significant therapeutic value as a means to improve ventricular performance. In the present study, we wished to ascertain whether activation of the cellular factor nuclear factor (NF)-kappaB suppresses mitochondrial defects and cell death of ventricular myocytes during hypoxic injury. METHODS AND RESULTS: In contrast to normoxic control cells, ventricular myocytes subjected to hypoxia displayed a 9.1-fold increase (P<0.05) in cell death, as determined by Hoechst 33258 nuclear staining and vital dyes. Mitochondrial defects consistent with permeability transition pore opening, loss of mitochondrial membrane potential (DeltaPsim), and Smac release were observed in cells subjected to hypoxia. An increase in postmitochondrial caspase 9 and caspase 3 activity was observed in hypoxic myocytes. Adenovirus-mediated delivery of wild-type IKKbeta (IKKbetawt) resulted in a significant increase in NF-kappaB-dependent DNA binding and gene transcription in ventricular myocytes. Interestingly, subcellular fractionation of myocytes revealed that the p65 subunit of NF-kappaB was localized to mitochondria. Hypoxia-induced mitochondrial defects and cell death were suppressed in cells expressing IKKbetawt but not in cells expressing the kinase-defective IKKbeta mutant. CONCLUSIONS: To the best of our knowledge, the data provide the first direct evidence that activation of the NF-kappaB signaling pathways is sufficient to suppress cell death of ventricular myocytes during hypoxia. Moreover, our data further suggest that NF-kappaB averts cell death through a mechanism that prevents perturbations to the mitochondrion during hypoxic injury.


Assuntos
Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , NF-kappa B/fisiologia , Animais , Apoptose , Caspase 3 , Caspase 9 , Caspases/metabolismo , Hipóxia Celular , Núcleo Celular/química , Células Cultivadas , DNA/metabolismo , Regulação da Expressão Gênica/fisiologia , Ventrículos do Coração/citologia , Quinase I-kappa B , Proteínas I-kappa B/metabolismo , Membranas Intracelulares/fisiologia , Canais Iônicos/metabolismo , Potenciais da Membrana/fisiologia , Mitocôndrias Cardíacas/patologia , Proteínas de Transporte da Membrana Mitocondrial , Poro de Transição de Permeabilidade Mitocondrial , Inibidor de NF-kappaB alfa , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/fisiologia , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes de Fusão/fisiologia , Transdução de Sinais , Transcrição Gênica/fisiologia , Transdução Genética
19.
Cardiovasc Res ; 64(3): 395-401, 2004 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-15537492

RESUMO

Over the last two decades, considerable effort has been made to better understand putative regulators and molecular switches that govern the cell cycle in attempts to reactivate cell cycle progression of cardiac muscle. Rapid advancements on the field of stem cycle biology including evidence of cardiac progenitors within the adult myocardium itself and reports of cardiomyocyte DNA synthesis, which each suggest that the adult myocardium may in fact have the capacity for de novo myocyte regeneration. Augmenting cardiomyocyte number by targeting specific cell cycle regulatory genes or by stimulating cardiac progenitor cells to differentiate into cardiac muscle may be of therapeutic value in repopulating the adult myocardium with functionally active cells in patients with end-stage heart failure. Advancements in the area of cardiomyocyte cell cycle control and regeneration and their therapeutic potential are discussed.


Assuntos
Insuficiência Cardíaca/patologia , Miócitos Cardíacos/patologia , Apoptose , Ciclo Celular , Proliferação de Células , Quinases Ciclina-Dependentes/metabolismo , Humanos , Regeneração , Transplante de Células-Tronco , Proteínas Supressoras de Tumor/metabolismo
20.
Mol Cell Biochem ; 242(1-2): 115-20, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12619873

RESUMO

A number of data are consistent with the hypothesis that increases in intracellular Na+ concentration (Na+i) during ischemia and early reperfusion lead to calcium overload and exacerbation of myocardial injury. However, the mechanisms underlying the increased Na+i remain unclear. 23Na nuclear magnetic resonance spectroscopy was used to monitor Na+i in isolated rat hearts perfused with a high concentration of fatty acid as can occur under some pathological conditions. Whole-cell patch-clamp experiments were also performed on isolated cardiomyocytes in order to investigate the role of voltage-gated sodium channels. Na+i increased to substantially above control levels during no-flow ischemia. The results show that a pharmacological reduction of Na+i increase by cariporide (1 micromol/L, a Na+/H+ exchange blocker) is not the only protection against ischemia-reperfusion damage, but that such protection may also be brought about by metabolic action aimed at reducing fatty acid utilization by myocardial cells. This action was obtained in the presence of etomoxir (0.1 micromol/L), an inhibitor of carnitine palmitoyltransferase-1 (the key enzyme involved in fatty acid uptake by the mitochondria) which also decreases long-chain acyl carnitine accumulation. The possibility of Na+ channels participating in Na+i increase as a consequence of alterations in cardiac metabolism was studied in isolated cells. Sustained I(Na) was stimulated by the presence of lysophosphatidylcholine (LPC, 10 micromol/L) whose accumulation during ischemia is, at least partly, dependent on increased long-chain acyl carnitine. Current activation was particularly significant in the range of potentials between -60 and -20 mV. This may have particular relevance in ischemia. The quantity of charge carried by sustained I(Na) was reduced by 24% in the presence of 1 micromol/L cariporide. Therefore, limitation of long-chain fatty acid metabolism, and consequent limitation of ischemia-induced long-chain acyl carnitine accumulation, may contribute to reducing intracellular Na+ increase during ischemia-reperfusion.


Assuntos
Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Reperfusão , Sódio/metabolismo , Animais , Células Cultivadas , Condutividade Elétrica , Eletrofisiologia , Cobaias , Transporte de Íons , Masculino , Miócitos Cardíacos/patologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA