Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 279(53): 55060-72, 2004 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-15485849

RESUMO

The principal feature of killing of Candida albicans and other pathogenic fungi by the catonic protein Histatin 5 (Hst 5) is loss of cytoplasmic small molecules and ions, including ATP and K(+), which can be blocked by the anion channel inhibitor 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid. We constructed C. albicans strains expressing one, two, or three copies of the TRK1 gene in order to investigate possible roles of Trk1p (the organism's principal K(+) transporter) in the actions of Hst 5. All measured parameters (Hst 5 killing, Hst 5-stimulated ATP efflux, normal Trk1p-mediated K(+) ((86)Rb(+)) influx, and Trk1p-mediated chloride conductance) were similarly reduced (5-7-fold) by removal of a single copy of the TRK1 gene from this diploid organism and were fully restored by complementation of the missing allele. A TRK1 overexpression strain of C. albicans, constructed by integrating an additional TRK1 gene into wild-type cells, demonstrated cytoplasmic sequestration of Trk1 protein, along with somewhat diminished toxicity of Hst 5. These results could be produced either by depletion of intracellular free Hst 5 due to sequestered binding, or to cooperativity in Hst 5-protein interactions at the plasma membrane. Furthermore, Trk1p-mediated chloride conductance was blocked by 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid in all of the tested strains, strongly suggesting that the TRK1 protein provides the essential pathway for ATP loss and is the critical effector for Hst 5 toxicity in C. albicans.


Assuntos
Antifúngicos/farmacologia , Candida albicans/metabolismo , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/fisiologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas e Peptídeos Salivares/fisiologia , Ácido 4-Acetamido-4'-isotiocianatostilbeno-2,2'-dissulfônico/química , Trifosfato de Adenosina/química , Alelos , Ânions , Peptídeos Catiônicos Antimicrobianos/química , Western Blotting , Cátions , Membrana Celular/metabolismo , Separação Celular , Canais de Cloreto/química , Cloretos/química , Citoplasma/metabolismo , Primers do DNA/química , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Eletrofisiologia , Escherichia coli/metabolismo , Citometria de Fluxo , Deleção de Genes , Teste de Complementação Genética , Histatinas , Histidina/química , Modelos Químicos , Modelos Genéticos , Oligonucleotídeos/química , Fases de Leitura Aberta , Técnicas de Patch-Clamp , Plasmídeos/metabolismo , Potássio/química , Inibidores de Proteases/farmacologia , Ligação Proteica , Estrutura Terciária de Proteína , RNA/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rubídio/química , Proteínas e Peptídeos Salivares/química , Fatores de Tempo
2.
Antimicrob Agents Chemother ; 48(1): 110-5, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14693527

RESUMO

Salivary histatins (Hsts) are potent candidacidal proteins that induce a nonlytic form of cell death in Candida albicans accompanied by loss of mean cell volume, cell cycle arrest, and elevation of intracellular levels of reactive oxygen species (ROS). Since these phenotypes are often markers of programmed cell death and apoptosis, we investigated whether other classical markers of apoptosis, including generation of intracellular ROS and protein carbonyl groups, chromosomal fragmentation (laddering), and cytochrome c release, are found in Hst 5-mediated cell death. Increased intracellular levels of ROS in C. albicans were detected in cells both following exogenous application of Hst 5 and following intracellular expression of Hst 5. However, Western blot analysis failed to detect specifically increased protein carbonylation in Hst 5-treated cells. There was no evidence of chromosomal laddering and no cytochrome c release was observed following treatment of C. albicans mitochondria with Hst 5. Superoxide dismutase enzymes of C. albicans and Saccharomyces cerevisiae provide essential protection against oxidative stress; therefore, we tested whether SOD mutants have increased susceptibility to Hst 5, as expected if ROS mediate fungicidal effects. Cell survival of S. cerevisiae SOD1/SOD2 mutants and C. albicans SOD1 mutants following Hst 5 treatment (31 micro M) was indistinguishable from the survival of wild-type cells treated with Hst 5. We conclude that ROS may not play a direct role in fungicidal activity and that Hst 5 does not initiate apoptosis or programmed cell death pathways.


Assuntos
Antifúngicos/farmacologia , Apoptose/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Proteínas e Peptídeos Salivares/farmacologia , Biomarcadores , Western Blotting , Candida albicans/enzimologia , Candida albicans/genética , Cromossomos Fúngicos/efeitos dos fármacos , Cromossomos Fúngicos/ultraestrutura , Citocromos c/metabolismo , DNA Fúngico/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Histatinas , Humanos , Testes de Sensibilidade Microbiana , Mitocôndrias/química , Mitocôndrias/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase/genética
3.
Infect Immun ; 71(6): 3251-60, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12761106

RESUMO

Salivary histatin 5 (Hst 5), a potent toxin for the human fungal pathogen Candida albicans, induces noncytolytic efflux of cellular ATP, potassium, and magnesium in the absence of cytolysis, implicating these ion movements in the toxin's fungicidal activity. Hst 5 action on Candida resembles, in many respects, the action of the K1 killer toxin on Saccharomyces cerevisiae, and in that system the yeast plasma membrane potassium channel, Tok1p, has recently been reported to be a primary target of toxin action. The question of whether the Candida homologue of Saccharomyces Tok1p might be a primary target of Hst 5 action has now been investigated by disruption of the C. albicans TOK1 gene. The resultant strains (TOK1/tok1) and (tok1/tok1) were compared with wild-type Candida (TOK1/TOK1) for relative ATP leakage and killing in response to Hst 5. Patch-clamp measurements on Candida protoplasts were used to verify the functional deletion of Tok1p and to provide its first description in Candida. Tok1p is an outwardly rectifying, noisily gated, 40-pS channel, very similar to that described in Saccharomyces. Knockout of CaTOK1 (tok1/tok1) completely abolishes the currents and gating events characteristic of Tok1p. Also, knockout (tok1/tok1) increases residual viability of Candida after Hst 5 treatment to 27%, from 7% in the wild type, while the single allele deletion (TOK1/tok1) increases viability to 18%. Comparable results were obtained for Hst-induced ATP efflux, but quantitative features of ATP loss suggest that wild-type TOK1 genes function cooperatively. Overall, very substantial killing and ATP efflux are produced by Hst 5 treatment after complete knockout of wild-type TOK1, making clear that Tok1p channels are not the primary site of Hst 5 action, even though they do play a modulating role.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Canais de Potássio/fisiologia , Proteínas de Saccharomyces cerevisiae , Proteínas e Peptídeos Salivares/farmacologia , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Candida albicans/metabolismo , Histatinas , Humanos , Dados de Sequência Molecular , Canais de Potássio/genética
4.
J Biol Chem ; 278(31): 28553-61, 2003 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12761219

RESUMO

Salivary histatins are a family of small histidine-rich peptides with potent antifungal activity. We previously identified a 70-kDa cell envelope protein in Candida albicans and Saccharomyces cerevisiae that mediates binding of histatin (Hst) 5. Isolation of Hst 5-binding protein followed by matrix-assisted laser desorption ionization mass spectrometry analysis identified this protein as the heat shock protein Ssa1p. Ssa protein and Hst 5-binding protein were found to be co-localized on immunoblots of yeast beta-mercaptoethanol cell wall extracts and cytosolic fractions. Yeast two-hybrid analysis showed strong interactions between Ssa1p and both Hst 3 and Hst 5. To assess functional roles of Ssa proteins in the Hst 5 antifungal mechanism in vivo, both binding and fungicidal assays were carried out using S. cerevisiae isogenic SSA1/SSA2 mutants. 125I-Hst 5 binding assays showed saturable binding (Kd = 2.57 x 10(-6) m) with the wild-type SSA1/SSA2 strain; however, Hst 5 binding with the Deltassa1ssa2 double mutant was reduced (Kd = 1.25 x 10(-6) m). Cell wall HSP70 proteins were also diminished, but still detectable, in S. cerevisiae Deltassa1ssa2 cells and are likely to be Ssa3p or Ssa4p. Hst 5 (31 microm) killed 80% of the wild-type cells in fungicidal assays at room temperature. However, only 50-60% killing of the single mutants (Deltassa1 and Deltassa2) was observed, and fungicidal activity was further reduced to 20-30% in the Deltassa1ssa2 double mutant. Incubation of cells under heat shock conditions increased the sensitivity of cells to Hst 5, which correlated with increased Hst 5-binding activity in Deltassa1ssa2 cells, but not in wild-type cells. This study provides evidence for a novel function for yeast Ssa1/2 proteins as cell envelope binding receptors for Hst 5 that mediate fungicidal activity.


Assuntos
Candida albicans/química , Proteínas de Transporte/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas e Peptídeos Salivares/metabolismo , Adenosina Trifosfatases , Sequência de Aminoácidos , Antifúngicos/farmacologia , Proteínas de Transporte/análise , Parede Celular/química , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Deleção de Genes , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/genética , Histatinas , Temperatura Alta , Humanos , Mercaptoetanol/farmacologia , Dados de Sequência Molecular , Mutagênese , Fragmentos de Peptídeos/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae , Proteínas e Peptídeos Salivares/química , Proteínas e Peptídeos Salivares/farmacologia , Alinhamento de Sequência , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Relação Estrutura-Atividade , Tripsina/metabolismo , Técnicas do Sistema de Duplo-Híbrido
5.
Infect Immun ; 70(9): 4777-84, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12183519

RESUMO

Human salivary histatin 5 (Hst 5) is a nonimmune salivary protein with antifungal activity against an important human pathogen, Candida albicans. The candidacidal activity of histatins appears to be a distinctive multistep mechanism involving depletion of the C. albicans intracellular ATP content as a result of nonlytic ATP efflux. Hst 5 caused a loss of cell viability concomitant with a decrease in cellular volume as determined both by a classical candidacidal assay with exogenous Hst 5 and by using a genetically engineered C. albicans strain expressing Hst 5. Preincubation of C. albicans cells with pharmacological inhibitors of anion transport provided complete or substantial protection from Hst 5-induced killing and volume reduction of cells. Moreover, intracellular expression of Hst 5 resulted in a reduction in the population mean cell volume that was accompanied by an increase in the percentage of unbudded cells and C. albicans cells in the G(1) phase. Following expression of Hst 5, the smallest cells sorted by fluorescence-activated cell sorting from the total population did not replicate and were exclusively in the G(1) phase. Cells with intracellularly expressed Hst 5 had greatly reduced G(1) cyclin transcript levels, indicating that they arrested in the G(1) phase before the onset of Start. Our data demonstrate that a key determinant in the mechanism of Hst 5 toxicity in C. albicans cells is the disruption of regulatory circuits for cell volume homeostasis that is closely coupled with loss of intracellular ATP. This novel process of fungicidal activity by a human salivary protein has highlighted potential interactions of Hst 5 with volume regulatory mechanisms and the process of yeast cell cycle control.


Assuntos
Antifúngicos/farmacologia , Candida albicans/citologia , Candida albicans/efeitos dos fármacos , Proteínas e Peptídeos Salivares/farmacologia , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/farmacologia , Trifosfato de Adenosina/metabolismo , Sequência de Bases , Candida albicans/genética , Candida albicans/metabolismo , Ciclo Celular/efeitos dos fármacos , Canais de Cloreto/antagonistas & inibidores , Ciclinas/genética , DNA Fúngico/genética , Fase G1/efeitos dos fármacos , Histatinas , Humanos , Técnicas In Vitro , Bloqueadores dos Canais de Potássio , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Proteínas e Peptídeos Salivares/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA