Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
ACS Appl Mater Interfaces ; 14(18): 21577-21584, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35471020

RESUMO

The atomic, electronic, optical, and mechanical properties of penta-like two-dimensional PdPX (X = O, S, Te) nanosheets have been systematically investigated using density functional theory calculations. All three PdPX nanosheets exhibit dynamic and mechanical stability on the basis of an analysis of phonon dispersions and the Born criteria, respectively. The PdPX monolayers are found to be brittle structures. Our calculations demonstrate that the PdPX nanosheets exhibit semiconducting characteristics with indirect band gaps of 0.93 (1.99), 1.34 (2.11), and 0.74 (1.51) eV for X = O, S, Te, respectively, using the PBE (HSE06) functional, where PdPTe is the best material for visible-light photocatalytic water splitting. Our findings give important basic characteristics of penta-like two-dimensional PdPX materials and should motivate further theoretical and experimental investigations of these interesting materials.

3.
Phys Chem Chem Phys ; 23(21): 12471-12478, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34037032

RESUMO

Research progress on single layer group III monochalcogenides has been increasing rapidly owing to their interesting physics. Herein, we investigate the dynamically stable single layer forms of XBi (X = Ge, Si or Sn) using density functional theory calculations. Phonon band dispersion calculations and ab initio molecular dynamics simulations reveal the dynamical and thermal stability of the considered monolayers. Raman spectra calculations indicate the existence of 5 Raman active phonon modes, 3 of which are prominent and can be observed in possible Raman measurements. The electronic band structures of the XBi single layers were investigated with and without the effects of spin-orbit coupling (SOC). Our results show that XBi single layers show semiconducting properties with narrow band gap values without SOC. However, only single layer SiBi is an indirect band gap semiconductor, while GeBi and SnBi exhibit metallic behaviors when adding spin-orbit coupling effects. In addition, the calculated linear elastic parameters indicate the soft nature of the predicted monolayers. Moreover, our predictions for the thermoelectric properties of single layer XBi reveal that SiBi is a good thermoelectric material with increasing temperature. Overall, it is proposed that single layer XBi structures can be alternative, stable 2D single layers with varying electronic and thermoelectric properties.

4.
ACS Omega ; 6(14): 9433-9441, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33869923

RESUMO

Very recently, a new class of the multicationic and -anionic entropy-stabilized chalcogenide alloys based on the (Ge, Sn, Pb) (S, Se, Te) formula has been successfully fabricated and characterized experimentally [Zihao Deng et al., Chem. Mater. 32, 6070 (2020)]. Motivated by the recent experiment, herein, we perform density functional theory-based first-principles calculations in order to investigate the structural, mechanical, electronic, optical, and thermoelectric properties. The calculations of the cohesive energy and elasticity parameters indicate that the alloy is stable. Also, the mechanical study shows that the alloy has a brittle nature. The GeSnPbSSeTe alloy is a semiconductor with a direct band gap of 0.4 eV (0.3 eV using spin-orbit coupling effect). The optical analysis illustrates that the first peak of Im(ε) for the GeSnPbSSeTe alloy along all polarization directions is located in the visible range of the spectrum which renders it a promising material for applications in optical and electronic devices. Interestingly, we find an optically anisotropic character of this system which is highly desirable for the design of polarization-sensitive photodetectors. We have accurately predicted the thermoelectric coefficients and have calculated a large power factor value of 3.7 × 1011 W m-1 K-2 s-1 for p-type. The high p-type power factor is originated from the multiple valleys near the valence band maxima. The anisotropic results of the optical and transport properties are related to the specific tetragonal alloy unit cell.

5.
Phys Chem Chem Phys ; 23(8): 4865-4873, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33615321

RESUMO

The electronic and optical properties of vertical heterostructures (HTSs) and lateral heterojunctions (HTJs) between (B,N)-codoped graphene (dop@Gr) and graphene (Gr), C3N, BC3 and h-BN monolayers are investigated using van der Waals density functional theory calculations. We have found that all the considered HTSs are energetically and thermally feasible at room temperature, and therefore they can be synthesized experimentally. The dop@Gr/Gr, BC3/dop@Gr and BN/dop@Gr HTSs are semiconductors with direct bandgaps of 0.1 eV, 80 meV and 1.23 eV, respectively, while the C3N/dop@Gr is a metal because of the strong interaction between dop@Gr and C3N layers. On the other hand, the dop@Gr-Gr and BN-dop@Gr HTJs are semiconductors, whereas the C3N-dop@Gr and BC3-dop@Gr HTJs are metals. The proposed HTSs can enhance the absorption of light in the whole wavelength range as compared to Gr and BN monolayers. The applied electric field or pressure strain changes the bandgaps of the HTSs and HTJs, indicating that these HTSs are highly promising for application in nanoscale multifunctional devices.

6.
Phys Chem Chem Phys ; 22(42): 24471-24479, 2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33089277

RESUMO

Density functional theory calculations are performed in order to study the structural and electronic properties of monolayer Pt2HgSe3. Our results show that the dynamically stable monolayer Pt2HgSe3 is a topological insulator with a band gap of 160 meV. In addition, the effect of layer thickness, strain and electric field on the electronic properties are systematically investigated using fully relativistic calculations. We find that the electronic properties are sensitive to the applied electric field. With increasing electric field strength up to 0.5 V Å-1, the band gap decreases from 160 to 10 meV at 0.5 V Å-1. Interestingly, upon further increasing the electric field up to 1.0 V Å-1, the band gap opens again and reaches its bare value (160 meV) at 1.0 V Å-1, which indicates that the band gap is reversibly controllable via the applied external electric field. Moreover, the electronic properties are also examined under uniaxial and biaxial strain. Our results reveal that the band gap value can be tuned to 150 meV (at 1%) and to 92 meV (at 6%) under uniaxial strain, while under biaxial tensile strain, it increases to 170 meV at 5% and fluctuates between 150 and 100 meV in the range of 5-10%. In contrast, the biaxial-compressive strain is found to drive the semiconducting-to-metallic transition for sufficiently large compressions (over 8%). On the other hand, we find that increasing the thickness of Pt2HgSe3 modifies the band gap to 150 meV (for the bilayer) and 140 meV (for the trilayer). In the bilayer Pt2HgSe3 structure, we further investigated the effect of out-of-plane pressure, both compressive and tensile, and our results show that the electronic structure of bilayer Pt2HgSe3 is largely preserved. Our study provides new insight into the modification of the electronic structure of monolayer Pt2HgSe3 upon application of external fields and variation in the layer thickness.

7.
Phys Chem Chem Phys ; 22(11): 6418-6433, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32149297

RESUMO

Using first-principles calculations, we study the effect of embedding various atoms into the nanopore sites of both C6N6 and C6N8 monolayers. Our results indicate that the embedded atoms significantly affect the electronic and magnetic properties of C6N6 and C6N8 monolayers and lead to extraordinary and multifarious electronic properties, such as metallic, half-metallic, spin-glass semiconductor and dilute-magnetic semiconductor behaviour. Our results reveal that the H atom concentration dramatically affects the C6N6 monolayer. On increasing the H coverage, the impurity states also increase due to H atoms around the Fermi-level. C6N6 shows metallic character when the H atom concentration reaches 6.25%. Moreover, the effect of charge on the electronic properties of both Cr@C6N6 and C@C6N8 is also studied. Cr@C6N6 is a ferromagnetic metal with a magnetic moment of 2.40 µB, and when 0.2 electrons are added and removed, it remains a ferromagnetic metal with a magnetic moment of 2.57 and 2.77 µB, respectively. Interestingly, one can observe a semi-metal, in which the VBM and CBM in both spin channels touch each other near the Fermi-level. C@C6N8 is a semiconductor with a nontrivial band gap. When 0.2 electrons are removed, it remains metallic, and under excess electronic charge, it exhibits half-metallic behaviour.

8.
Sci Rep ; 10(1): 213, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937833

RESUMO

PdCl3 belongs to a novel class of Dirac materials with Dirac spin-gapless semiconducting characteristics. In this paper based, on first-principles calculations, we have systematically investigated the effect of adatom adsorption, vacancy defects, electric field, strain, edge states and layer thickness on the electronic and magnetic properties of PdCl3 (palladium trichloride). Our results show that when spin-orbital coupling is included, PdCl3 exhibits the quantum anomalous Hall effect with a non-trivial band gap of 24 meV. With increasing number of layers, from monolayer to bulk, a transition occurs from a Dirac half-metal to a ferromagnetic metal. On application of a perpendicular electrical field to bilayer PdCl3, we find that the energy band gap decreases with increasing field. Uniaxial and biaxial strain, significantly modifies the electronic structure depending on the strain type and magnitude. Adsorption of adatom and topological defects have a dramatic effect on the electronic and magnetic properties of PdCl3. In particular, the structure can become a metal (Na), half-metal (Be, Ca, Al, Ti, V, Cr, Fe and Cu with, respective, 0.72, 9.71, 7.14, 6.90, 9.71, 4.33 and 9.5 µB magnetic moments), ferromagnetic-metal (Sc, Mn and Co with 4.55, 7.93 and 2.0 µB), spin-glass semiconductor (Mg, Ni with 3.30 and 8.63 µB), and dilute-magnetic semiconductor (Li, K and Zn with 9.0, 9.0 and 5.80 µB magnetic moment, respectively). Single Pd and double Pd + Cl vacancies in PdCl3 display dilute-magnetic semiconductor characteristics, while with a single Cl vacancy, the material becomes a half-metal. The calculated optical properties of PdCl3 suggest it could be a good candidate for microelectronic and optoelectronics devices.

9.
Phys Chem Chem Phys ; 22(4): 2249-2261, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31916563

RESUMO

In the present work, the effect of various embedded atom impurities on tuning electronic and magnetic properties of C3N4 and C4N3 nanosheets have been studied using first-principles calculations. Our calculations show that C3N4 is a semiconductor and it exhibits extraordinary electronic properties such as dilute-magnetic semiconductor (with H, F, Cl, Be, V, Fe and Co); metal (with N, P, Mg and Ca), half-metal (with Li, Na, K, Al, Sc, Cr, Mn, and Cu) and semiconductor (with O, S, B, C, Si, Ti, Ni and Zn) with the band gaps in the range of 0.3-2.0 eV depending on the species of embedded atom. The calculated electronic properties reveal that C4N3 is a half-metal and it retains half-metallic character with embedded H, O, S, F, B, N, P, Be, Mg, Al, Sc, V, Fe, Ni and Zn atoms. The substitution of Cl, C, Cr and Mn atoms create ferromagnetic-metal character in the C4N3 nanosheet, embedded Co and Cu atoms exhibit a dilute-magnetic semiconductor nature, and embedded Ti atoms result in the system becoming a semiconductor. Therefore, our results reveal the fact that the band gap and magnetism can be modified or induced by various atom impurities, thus, offering effective possibilities to tune the electronic and magnetic properties of C3N4 and C4N3 nanosheets.

10.
RSC Adv ; 10(51): 30398-30405, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35516017

RESUMO

Herein, by using first-principles calculations, we demonstrate a two-dimensional (2D) of XSb (X = Si, Ge, and Sn) monolayers that have a honey-like crystal structure. The structural, mechanical, electronic, thermoelectric efficiency, and optical properties of XSb monolayers are studied. Ab initio molecular dynamic simulations and phonon dispersion calculations suggests their good thermal and dynamical stabilities. The mechanical properties of XSb monolayers shows that the monolayers are considerably softer than graphene, and their in-plane stiffness decreases from SiSb to SnSb. Our results shows that the single layers of SiSb, GeSb and SnSb are semiconductor with band gap of 1.48, 0.77 and 0.73 eV, respectively. The optical analysis illustrate that the first absorption peaks of the SiSb, GeSb and SnSb monolayers along the in-plane polarization are located in visible range of light which may serve as a promising candidate to design advanced optoelectronic devices. Thermoelectric properties of the XSb monolayers, including Seebeck coefficient, electrical conductivity, electronic thermal conductivity, power factor and figure of merit are calculated as a function of doping level at temperatures of 300 K and 800 K. Between the studied two-dimensional materials (2DM), SiSb single layer may be the most promising candidate for application in the thermoelectric generators.

11.
RSC Adv ; 10(46): 27743-27751, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35516966

RESUMO

In this work, by performing first-principles calculations, we explore the effects of various atom impurities on the electronic and magnetic properties of single layers of C6N6 and C6N8. Our results indicate that atom doping may significantly modify the electronic properties. Surprisingly, doping Cr into a holey site of C6N6 monolayer was found to exhibit a narrow band gap of 125 meV upon compression strain, considering the spin-orbit coupling effect. Also, a C atom doped in C6N8 monolayer shows semi-metal nature under compression strains larger than -2%. Our results propose that Mg or Ca doped into strained C6N6 may exhibit small band gaps in the range of 10-30 meV. In addition, a magnetic-to-nonmagnetic phase transition can occur under large tensile strains in the Ca doped C6N8 monolayer. Our results highlight the electronic properties and magnetism of C6N6 and C6N8 monolayers. Our results show that the electronic properties can be effectively modified by atom doping and mechanical strain, thereby offering new possibilities to tailor the electronic and magnetic properties of C6N6 and C6N8 carbon nitride monolayers.

12.
RSC Adv ; 10(53): 31894-31900, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-35518134

RESUMO

Using density functional theory, we investigate a novel two-dimensional silicon bismotide (SiBi) that has a layered GaSe-like crystal structure. Ab initio molecular dynamic simulations and phonon dispersion calculations suggest its good thermal and dynamical stability. The SiBi monolayer is a semiconductor with a narrow indirect bandgap of 0.4 eV. Our results show that the indirect bandgap decreases as the number of layers increases, and when the number of layers is more than six layers, direct-to-indirect bandgap switching occurs. The SiBi bilayer is found to be very sensitive to an E-field. The bandgap monotonically decreases in response to uniaxial and biaxial compressive strain, and reaches 0.2 eV at 5%, while at 6%, the semiconductor becomes a metal. For both uniaxial and biaxial tensile strains, the material remains a semiconductor and indirect-to-direct bandgap transition occurs at a strain of 3%. Compared to a SiBi monolayer with a layer thickness of 4.89 Å, the bandgap decreases with either increasing or decreasing layer thickness, and at a thicknesses of 4.59 to 5.01 Å, the semiconductor-to-metal transition happens. In addition, under pressure, the semiconducting character of the SiBi bilayer with a 0.25 eV direct bandgap is preserved. Our results demonstrate that the SiBi nanosheet is a promising candidate for designing high-speed low-dissipation devices.

14.
Chemphyschem ; 21(2): 164-174, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31705615

RESUMO

Using first-principles calculations we systematically investigate the atomic, electronic and magnetic properties of novel two-dimensional materials (2DM) with a stoichiometry C3 N which has recently been synthesized. We investigate how the number of layers affect the electronic properties by considering monolayer, bilayer and trilayer structures, with different stacking of the layers. We find that a transition from semiconducting to metallic character occurs which could offer potential applications in future nanoelectronic devices. We also study the affect of width of C3 N nanoribbons, as well as the radius and length of C3 N nanotubes, on the atomic, electronic and magnetic properties. Our results show that these properties can be modified depending on these dimensions, and depend markedly on the nature of the edge states. Functionalization of the nanostructures by the adsorption of H adatoms is found induce metallic, half-metallic, semiconducting and ferromagnetic behavior, which offers an approach to tailor the properties, as can the application of strain. Our calculations give insight into this new family of C3 N nanostructures, which reveal unusual electronic and magnetic properties, and may have great potential in applications such as sensors, electronics and optoelectronic at the nanoscale.

15.
Phys Chem Chem Phys ; 21(37): 21070-21083, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31528958

RESUMO

Using first-principles calculations the effect of topological defects, vacancies, Stone-Wales and anti-site and substitution of atoms, on the structure and electronic properties of monolayer C3N are investigated. Vacancy defects introduce localized states near the Fermi level and a local magnetic moment. While pristine C3N is an indirect semiconductor with a 0.4 eV band gap, with substitution of O, S and Si atoms for C, it remains a semiconductor with a band gap in the range 0.25-0.75 eV, while it turns into a metal with H, Cl, B, P, Li, Na, K, Be and Mg substitution. With F substitution, it becomes a dilute-magnetic semiconductor, while with Ca substitution it is a ferromagnetic-metal. When replacing the N host atom, C3N turns into: a metal (H, O, S, C, Si, P, Li and Be), ferromagnetic-metal (Mg), half-metal (Ca) and spin-glass semiconductor (Na and K). Moreover, the effects of charging and strain on the electronic properties of Na atom substitution in C3N are investigated. We found that the magnetic moment decreases or increases depending on the type and size of strain (tensile or compression). Our study shows how the band gap and magnetism in monolayer C3N can be tuned by introducing defects and atom substitution. The so engineered C3N can be a good candidate for future low dimensional devices.

16.
Phys Chem Chem Phys ; 21(20): 10552-10566, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31073575

RESUMO

Defects are inevitably present in materials, and their existence in a material strongly affects its fundamental physical properties. We have systematically investigated the effects of surface adsorption, substitutional impurities, defect engineering, an electric field and strain engineering on the structural, electronic and magnetic properties of antimonene nanosheets, using spin-polarized density functional calculations based on first-principles. The adsorption or substitution of atoms can locally modify the atomic and electronic structures as well as induce a variety of electronic behaviors including metal, half-metal, ferromagnetic metal, dilute magnetic semiconductor and spin-glass semiconductor. Our calculations show that the presence of typical defects (vacancies and Stone-Wales defect) in antimonene affects the geometrical symmetry as well as the band gap in the electronic band structure and induces magnetism to antimonene. Moreover, by applying an external electric field and strain (uniaxial and biaxial), the electronic structure of antimonene can be easily modified. The calculation results presented in this paper provide a fundamental insight into the tunable nature of the electronic properties of antimonene, supporting its promise for use in future applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA