Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(48): 58252-58262, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39292307

RESUMO

Poorly-treated wastewater harbors harmful microorganisms, posing risks to both the environment and public health. To mitigate this, it is essential to implement robust disinfection techniques in wastewater treatment plants. The use of performic acid (PFA) oxidation has emerged as a promising alternative, due to its powerful disinfection properties and minimal environmental footprint. While PFA has been used to inactivate certain microbial indicators, its potential to tackle the entire microbial community in effluents, particularly resistant bacterial strains, remains largely unexplored. The present study evaluates the efficacy of PFA disinfection on the microbial communities of a WWTP effluent, through microbial resistance mechanisms due to their membrane structure. The effluent microbiome was quantified and identified. The results showed that the number of damaged cells increases with CT, reaching a maximum for CT = 240 mg/L•min and plateauing around 60 mg/L•min, highlighting the optimal conditions for PFA-disinfection against microbial viability. A low PFA level with a 10-min contact time significantly affected the microbial composition. It is worth noting the sensitivity of several bacterial genera such as Flavobacterium, Pedobacter, Massilia, Exiguobacterium, and Sphingorhabdus to PFA, while others, Acinetobacter, Leucobacter, Thiothrix, Paracoccus, and Cloacibacterium, showed resistance. The results detail the resistance and sensitivity of bacterial groups to PFA, correlated with their Gram-positive or Gram-negative membrane structure. These results underline PFA effectiveness in reducing microbial levels and remodeling bacterial composition, even with minimal concentrations and short contact times, demonstrating its suitability for widespread application in WWTPs.


Assuntos
Bactérias , Desinfecção , Águas Residuárias , Desinfecção/métodos , Águas Residuárias/microbiologia , Bactérias/efeitos dos fármacos , Eliminação de Resíduos Líquidos/métodos , Microbiota/efeitos dos fármacos
2.
Heliyon ; 10(9): e30614, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38726162

RESUMO

Microorganisms play an important role in maintaining the proper functioning of river ecosystems and are promising candidates for environmental indicators. They are also highly sensitive to environmental changes. It is necessary to have basic knowledge about them in order to know the ecological status of river ecosystem. To our knowglege, there is very little information on the status of microorganisms in surface water of the Seine River, although the Seine River is one of the rivers that suffers the greatest impact from humain activities in the world due to a weak dilution effect. It is therefore necessary to carry out a microbial analysis to assess the ecological status of the Seine River and to use it as a reference to compare with the future state when, for instance, new disinfection technologies of wastewater are implemented. To this end, the microbial communities of the Seine surface water were analyzed, taking into account the spatial effect, including the tributaries, and from upstream to downstream of the Paris conurbation and the temporal aspect, with a monitoring over 4 seasons. The results showed that the microbiome of the water is highly diverse and involved a variety of functions. The main phyla making up the surface water microbiome were Proteobacteria, Actinobacteriota, Firmicutes, Bacteroidota, while other minor phyla were Deinococcota, Patescibacteria, Gemmatimonadota, Cyanobacteria, Bdellovibrionota, Acidobacteriota, Campilobacterota, Myxococcota, and Desulfobacterota. Overall, the microbial community did not change spatially (with the exception of some minor differences between upstream and downstream), but did vary seasonally. The main factors influencing this microbiome were temperature, nitrate and orthophosphate concentrations. The main predicted functions were related to cell metabolism, in particular carbohydrates, amino acids, lipids, energy, vitamins and cofactors, and cell mobility. The microbial compositions showed a strong balance between microbial groups and were involved in the degradation of recalcitrant compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA