Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Mol Cell Cardiol ; 94: 153-161, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27079252

RESUMO

Matrix metalloproteinases (MMPs) are zinc-dependent proteases involved in intra- and extra-cellular matrix remodeling resulting from oxidative stress injury to the heart. MMP-2 was the first MMP to be localized to the nucleus; however, its biological functions there are unclear. We hypothesized that MMP-2 is present in the nucleus under normal physiological conditions but increases during myocardial ischemia-reperfusion (I/R) injury-induced oxidative stress, proteolyzing nuclear structural proteins. Lamins are intermediate filament proteins that provide structural support to the nucleus and are putative targets of MMP-2. To identify lamin susceptibility to MMP-2 proteolysis, purified lamin A or B was incubated with MMP-2 in vitro. Lamin A, but not lamin B, was proteolysed by MMP-2 into an approximately 50kDa fragment, which was also predicted by in silico cleavage site analysis. Immunofluorescent confocal microscopy and subcellular fractionation showed MMP-2 both in the cytosol and nuclei of neonatal rat ventricular myocytes. Rat hearts were isolated and perfused by the Langendorff method aerobically, or subjected to I/R injury in the presence or absence of o-phenanthroline, an MMP inhibitor. Nuclear fractions extracted from I/R hearts showed increased MMP-2 activity, but not protein level. The level of troponin I, a known sarcomeric target of MMP-2, was rescued in I/R hearts treated with o-phenanthroline, demonstrating the efficacy of MMP inhibition. However, lamin A or B levels remained unchanged in I/R hearts. MMP-2 has a widespread subcellular distribution in cardiomyocytes, including a significant presence in the nucleus. The increase in nuclear MMP-2 activity seen during stunning injury here, indicates yet unknown biological actions, other than lamin proteolysis, which may require more severe ischemia to effect.


Assuntos
Metaloproteinase 2 da Matriz/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Matriz Nuclear/metabolismo , Animais , Espaço Intracelular/metabolismo , Lamina Tipo A/metabolismo , Lamina Tipo B/metabolismo , Masculino , Contração Miocárdica , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Transporte Proteico , Proteólise , Ratos
2.
MethodsX ; 2: 440-5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26740924

RESUMO

Many types of studies require the localization of a protein to, or isolation of enriched protein from a specific cellular compartment. Many protocols in the literature and from commercially available kits claim to yield pure cellular fractions. However, in our hands, the former often do not work effectively and the latter may be prohibitively expensive if a large number of fractionations are required. Furthermore, the largely proprietary composition of reagents in commercial kits means that the user is not able to make adjustments if, for example, a particular component affects the activity of a protein of interest. The method described here allows the isolation of purified proteins from three cellular fractions: the cytosol, membrane-bound organelles, and the nucleus. It uses gentle buffers with increasing detergent strength that sequentially lyse the cell membrane, organelle membranes and finally the nuclear membrane.•Quick, simple to replicate or adjust; this method does not require expensive reagents or use of commercial kits•The protocol can be applied to tissue samples or cultured cells without changing buffer components•Yields purified fractions of cytosolic, membrane bound and nuclear proteins, with the proper distribution of the appropriate subcellular markers: GAPDH, VDAC, SERCA2 and lamin A/C.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA