Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 34(3): R98-R99, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38320482

RESUMO

How are motor neurons tuned for very different jobs? Classic work has focused on variations in motor neuron size and their premotor networks. New results in rattlesnakes show that shifting a motor neuron's temporal precision can be as simple as changing its potassium channel conductance.


Assuntos
Crotalus , Neurônios Motores , Neurônios Motores/fisiologia , Crotalus/fisiologia , Animais
2.
Curr Opin Neurobiol ; 82: 102776, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37634321

RESUMO

Most animals begin controlling their posture, or orientation with respect to gravity, at an early stage in life. Posture is vital for locomotor function. Even animals like fish, which are capable of swimming upside-down, must actively control their orientation to coordinate behaviors such as capturing prey near the water's surface. Here we review recent research from multiple laboratories investigating the organization and function of the vestibular circuits underlying postural control in zebrafish. Some findings in zebrafish strongly align with prior observations in mammals, reinforcing our understanding of homologies between systems. In other instances, the unique transparency and accessibility of zebrafish has enabled new analyses of several neural circuit components that remain challenging to study in mammalian systems. These new results demonstrate topographical and circuit features in postural control.


Assuntos
Vestíbulo do Labirinto , Peixe-Zebra , Animais , Equilíbrio Postural , Mamíferos
3.
Curr Biol ; 33(7): 1265-1281.e7, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36924768

RESUMO

Across the nervous system, neurons with similar attributes are topographically organized. This topography reflects developmental pressures. Oddly, vestibular (balance) nuclei are thought to be disorganized. By measuring activity in birthdated neurons, we revealed a functional map within the central vestibular projection nucleus that stabilizes gaze in the larval zebrafish. We first discovered that both somatic position and stimulus selectivity follow projection neuron birthdate. Next, with electron microscopy and loss-of-function assays, we found that patterns of peripheral innervation to projection neurons were similarly organized by birthdate. Finally, birthdate revealed spatial patterns of axonal arborization and synapse formation to projection neuron outputs. Collectively, we find that development reveals previously hidden organization to the input, processing, and output layers of a highly conserved vertebrate sensorimotor circuit. The spatial and temporal attributes we uncover constrain the developmental mechanisms that may specify the fate, function, and organization of vestibulo-ocular reflex neurons. More broadly, our data suggest that, like invertebrates, temporal mechanisms may assemble vertebrate sensorimotor architecture.


Assuntos
Neurônios , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Neurônios/fisiologia , Reflexo Vestíbulo-Ocular/fisiologia , Tronco Encefálico , Núcleos Vestibulares/fisiologia
4.
Annu Rev Neurosci ; 46: 79-99, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-36854318

RESUMO

The spinal cord is home to the intrinsic networks for locomotion. An animal in which the spinal cord has been fully severed from the brain can still produce rhythmic, patterned locomotor movements as long as some excitatory drive is provided, such as physical, pharmacological, or electrical stimuli. Yet it remains a challenge to define the underlying circuitry that produces these movements because the spinal cord contains a wide variety of neuron classes whose patterns of interconnectivity are still poorly understood. Computational models of locomotion accordingly rely on untested assumptions about spinal neuron network element identity and connectivity. In this review, we consider the classes of spinal neurons, their interconnectivity, and the significance of their circuit connections along the long axis of the spinal cord. We suggest several lines of analysis to move toward a definitive understanding of the spinal network.


Assuntos
Interneurônios , Medula Espinal , Animais , Medula Espinal/fisiologia , Interneurônios/fisiologia , Neurônios , Locomoção/fisiologia , Encéfalo
5.
Elife ; 112022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-36580075

RESUMO

Shared lineage has diverse effects on patterns of neuronal connectivity. In mammalian cortex, excitatory sister neurons assemble into shared microcircuits. In Drosophila, in contrast, sister neurons with different levels of Notch expression (NotchON/NotchOFF) develop distinct identities and diverge into separate circuits. Notch-differentiated sister neurons have been observed in vertebrate spinal cord and cerebellum, but whether they integrate into shared or distinct circuits remains unknown. Here, we evaluate how sister V2a (NotchOFF)/V2b (NotchON) neurons in the zebrafish integrate into spinal circuits. Using an in vivo labeling approach, we identified pairs of sister V2a/b neurons born from individual Vsx1+ progenitors and observed that they have somata in close proximity to each other and similar axonal trajectories. However, paired whole-cell electrophysiology and optogenetics revealed that sister V2a/b neurons receive input from distinct presynaptic sources, do not communicate with each other, and connect to largely distinct targets. These results resemble the divergent connectivity in Drosophila and represent the first evidence of Notch-differentiated circuit integration in a vertebrate system.


The brain is populated by neurons which are generated during embryonic development from cells called progenitors. Neurons that come from the same progenitor cell are considered to be 'sisters'. In certain brain regions of mice, sister neurons are often wired into shared networks, meaning they are more likely to receive input from the same neurons and connect with each other than non-sister cells. In contrast, in invertebrate animals, like the fruit fly, sister neurons often have different identities and are less likely to connect with each other. This may be because sister neurons in fruit flies often have varied levels of a protein called Notch, which plays an important role in establishing the identity of cells. Vertebrate and invertebrate animals are different in many respects, and it remained unclear whether Notch levels dictate which sister neurons connect together in vertebrates as they do in fruit flies. To investigate, Bello-Rojas and Bagnall studied two neurons in the spinal cord of zebrafish embryos which come from the same type of progenitor cell: the V2a neuron which has low levels of Notch, and the V2b neuron which has high levels of Notch. Fish, like humans, are vertebrates; however, their embryos are mostly transparent, making it easier to track how their neurons make connections during development using a microscope. This enabled Bello-Rojas and Bagnall to monitor whether V2a and V2b sister neurons joined the same network, like in other vertebrates, or different networks, akin to sister neurons in fruit flies which also have differing levels of Notch. Bello-Rojas and Bagnall found that sister V2a and V2b neurons stayed close to one another and seemed to connect through similar paths. However, closer investigation revealed that the sister neurons did not receive input from the same source. They also did not connect to each other or the same output neuron, suggesting that V2a and V2b sister neurons are part of different networks. This is the first time Notch levels have been shown to regulate which network a neuron will join in a vertebrate species. Since the V2a and V2b neurons are involved in controlling body movement, future work should determine whether adding progenitor cells that produce these neurons into the spinal cord could help the neuron network recover after injury or disease.


Assuntos
Interneurônios , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Interneurônios/fisiologia , Neurônios , Diferenciação Celular , Medula Espinal/fisiologia , Mamíferos
6.
Nature ; 610(7932): 453-454, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36224359
7.
Front Neurol ; 13: 937054, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35937055

RESUMO

The larval zebrafish acquires a repertoire of vestibular-driven behaviors that aid survival early in development. These behaviors rely mostly on the utricular otolith, which senses inertial (tilt and translational) head movements. We previously characterized the known central brainstem targets of utricular afferents using serial-section electron microscopy of a larval zebrafish brain. Here we describe the rest of the central targets of utricular afferents, focusing on the neurons whose identities are less certain in our dataset. We find that central neurons with commissural projections have a wide range of predicted directional tuning, just as in other vertebrates. In addition, somata of central neurons with inferred responses to contralateral tilt are located more laterally than those with inferred responses to ipsilateral tilt. Many dorsally located central utricular neurons are unipolar, with an ipsilateral dendritic ramification and commissurally projecting axon emerging from a shared process. Ventrally located central utricular neurons tended to receive otolith afferent synaptic input at a shorter distance from the soma than in dorsally located neurons. Finally, we observe an unexpected synaptic target of utricular afferents: afferents from the medial (horizontal) semicircular canal. Collectively, these data provide a better picture of the gravity-sensing circuit. Furthermore, we suggest that vestibular circuits important for survival behaviors develop first, followed by the circuits that refine these behaviors.

8.
Nat Commun ; 13(1): 5060, 2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-36030280

RESUMO

Motor circuits develop in sequence from those governing fast movements to those governing slow. Here we examine whether upstream sensory circuits are organized by similar principles. Using serial-section electron microscopy in larval zebrafish, we generated a complete map of the gravity-sensing (utricular) system spanning from the inner ear to the brainstem. We find that both sensory tuning and developmental sequence are organizing principles of vestibular topography. Patterned rostrocaudal innervation from hair cells to afferents creates an anatomically inferred directional tuning map in the utricular ganglion, forming segregated pathways for rostral and caudal tilt. Furthermore, the mediolateral axis of the ganglion is linked to both developmental sequence and neuronal temporal dynamics. Early-born pathways carrying phasic information preferentially excite fast escape circuits, whereas later-born pathways carrying tonic signals excite slower postural and oculomotor circuits. These results demonstrate that vestibular circuits are organized by tuning direction and dynamics, aligning them with downstream motor circuits and behaviors.


Assuntos
Vestíbulo do Labirinto , Peixe-Zebra , Animais , Movimentos Oculares , Sensação Gravitacional , Larva
9.
Curr Biol ; 31(17): 3820-3833.e4, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34289387

RESUMO

Rostro-caudal coordination of spinal motor output is essential for locomotion. Most spinal interneurons project axons longitudinally to govern locomotor output, yet their connectivity along this axis remains unclear. In this study, we use larval zebrafish to map synaptic outputs of a major inhibitory population, V1 (Eng1+) neurons, which are implicated in dual sensory and motor functions. We find that V1 neurons exhibit long axons extending rostrally and exclusively ipsilaterally for an average of 6 spinal segments; however, they do not connect uniformly with their post-synaptic targets along the entire length of their axon. Locally, V1 neurons inhibit motor neurons (both fast and slow) and other premotor targets, including V2a, V2b, and commissural premotor neurons. In contrast, V1 neurons make robust long-range inhibitory contacts onto a dorsal horn sensory population, the commissural primary ascending neurons (CoPAs). In a computational model of the ipsilateral spinal network, we show that this pattern of short-range V1 inhibition to motor and premotor neurons underlies burst termination, which is critical for coordinated rostro-caudal propagation of the locomotor wave. We conclude that spinal network architecture in the longitudinal axis can vary dramatically, with differentially targeted local and distal connections, yielding important consequences for function.


Assuntos
Neurônios Motores , Peixe-Zebra , Animais , Interneurônios/fisiologia , Locomoção/fisiologia , Neurônios Motores/fisiologia , Medula Espinal/fisiologia
11.
Neuron ; 108(4): 748-762.e4, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-32937099

RESUMO

As sensory information moves through the brain, higher-order areas exhibit more complex tuning than lower areas. Though models predict that complexity arises via convergent inputs from neurons with diverse response properties, in most vertebrate systems, convergence has only been inferred rather than tested directly. Here, we measure sensory computations in zebrafish vestibular neurons across multiple axes in vivo. We establish that whole-cell physiological recordings reveal tuning of individual vestibular afferent inputs and their postsynaptic targets. Strong, sparse synaptic inputs can be distinguished by their amplitudes, permitting analysis of afferent convergence in vivo. An independent approach, serial-section electron microscopy, supports the inferred connectivity. We find that afferents with similar or differing preferred directions converge on central vestibular neurons, conferring more simple or complex tuning, respectively. Together, these results provide a direct, quantifiable demonstration of feedforward input convergence in vivo.


Assuntos
Neurônios Aferentes/fisiologia , Membrana dos Otólitos/fisiologia , Núcleos Vestibulares/fisiologia , Animais , Estimulação Elétrica , Potenciais Somatossensoriais Evocados/fisiologia , Técnicas de Introdução de Genes , Microscopia Eletrônica , Neurônios/fisiologia , Neurônios/ultraestrutura , Neurônios Aferentes/ultraestrutura , Núcleos Vestibulares/ultraestrutura , Peixe-Zebra
12.
Elife ; 82019 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-31355747

RESUMO

The spinal cord contains a diverse array of interneurons that govern motor output. Traditionally, models of spinal circuits have emphasized the role of inhibition in enforcing reciprocal alternation between left and right sides or flexors and extensors. However, recent work has shown that inhibition also increases coincident with excitation during contraction. Here, using larval zebrafish, we investigate the V2b (Gata3+) class of neurons, which contribute to flexor-extensor alternation but are otherwise poorly understood. Using newly generated transgenic lines we define two stable subclasses with distinct neurotransmitter and morphological properties. These V2b subclasses synapse directly onto motor neurons with differential targeting to speed-specific circuits. In vivo, optogenetic manipulation of V2b activity modulates locomotor frequency: suppressing V2b neurons elicits faster locomotion, whereas activating V2b neurons slows locomotion. We conclude that V2b neurons serve as a brake on axial motor circuits. Together, these results indicate a role for ipsilateral inhibition in speed control.


Assuntos
Interneurônios/fisiologia , Neurônios Motores/fisiologia , Medula Espinal/citologia , Animais , Movimento (Física) , Contração Muscular , Peixe-Zebra
13.
Curr Opin Neurobiol ; 53: 83-89, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29957408

RESUMO

Most animals orient their bodies with respect to gravity to facilitate locomotion and perception. The neural circuits responsible for these orienting movements have long served as a model to address fundamental questions in systems neuroscience. Though postural control is vital, we know little about development of either balance reflexes or the neural circuitry that produces them. Recent work in a genetically and optically accessible vertebrate, the larval zebrafish, has begun to reveal the mechanisms by which such vestibular behaviors and circuits come to function. Here we highlight recent work that leverages the particular advantages of the larval zebrafish to illuminate mechanisms of postural development, the role of sensation for balance circuit development, and the organization of developing vestibular circuits. Further, we frame open questions regarding the developmental mechanisms for functional circuit assembly and maturation where studying the zebrafish vestibular system is likely to open new frontiers.


Assuntos
Comportamento Animal/fisiologia , Larva/crescimento & desenvolvimento , Vias Neurais/crescimento & desenvolvimento , Equilíbrio Postural/fisiologia , Vestíbulo do Labirinto/crescimento & desenvolvimento , Peixe-Zebra/crescimento & desenvolvimento , Animais
14.
J Assoc Res Otolaryngol ; 18(3): 415-425, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28332011

RESUMO

What is the role of normally patterned sensory signaling in development of vestibular circuits? For technical reasons, including the difficulty in depriving animals of vestibular inputs, this has been a challenging question to address. Here we take advantage of a vestibular-deficient zebrafish mutant, rock solo AN66 , in order to examine whether normal sensory input is required for formation of vestibular-driven postural circuitry. We show that the rock solo AN66 mutant is a splice site mutation in the secreted glycoprotein otogelin (otog), which we confirm through both whole genome sequencing and complementation with an otog early termination mutant. Using confocal microscopy, we find that elements of postural circuits are anatomically normal in rock solo AN66 mutants, including hair cells, vestibular ganglion neurons, and vestibulospinal neurons. Surprisingly, the balance and postural deficits that are readily apparent in younger larvae disappear around 2 weeks of age. We demonstrate that this behavioral recovery follows the delayed development of the anterior (utricular) otolith, which appears around 14 days post-fertilization (dpf), compared to 1 dpf in WT. These findings indicate that utricular signaling is not required for normal structural development of the inner ear and vestibular nucleus neurons. Furthermore, despite the otolith's developmental delay until well after postural behaviors normally appear, downstream circuits can drive righting reflexes within ∼1-2 days of its arrival, indicating that vestibular circuit wiring is not impaired by a delay in patterned activity. The functional recovery of postural behaviors may shed light on why humans with mutations in otog exhibit only subclinical vestibular deficits.


Assuntos
Vestíbulo do Labirinto/crescimento & desenvolvimento , Animais , Mutação , Vestíbulo do Labirinto/inervação , Peixe-Zebra
15.
J Neurosci ; 34(42): 14046-54, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25319701

RESUMO

An emerging consensus from studies of axial and limb networks is that different premotor populations are required for different speeds of locomotion. An important but unresolved issue is why this occurs. Here, we perform voltage-clamp recordings from axial motoneurons in larval zebrafish during "fictive" swimming to test the idea that systematic differences in the biophysical properties of axial motoneurons are associated with differential tuning in the weight and timing of synaptic drive, which would help explain premotor population shifts. We find that increases in swimming speed are accompanied by increases in excitation preferentially to lower input resistance (Rin) motoneurons, whereas inhibition uniformly increases with speed to all motoneurons regardless of Rin. Additionally, while the timing of rhythmic excitatory drive sharpens within the pool as speed increases, there are shifts in the dominant source of inhibition related to Rin. At slow speeds, anti-phase inhibition is larger throughout the pool. However, as swimming speeds up, inhibition arriving in-phase with local motor activity increases, particularly in higher Rin motoneurons. Thus, in addition to systematic differences in the weight and timing of excitation related to Rin and speed, there are also speed-dependent shifts in the balance of different sources of inhibition, which is most obvious in more excitable motor pools. We conclude that synaptic drive is differentially tuned to the biophysical properties of motoneurons and argue that differences in premotor circuits exist to simplify the coordination of activity within spinal motor pools during changes in locomotor speed.


Assuntos
Padronização Corporal/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Locomoção/fisiologia , Neurônios Motores/fisiologia , Animais , Feminino , Masculino , Técnicas de Cultura de Órgãos , Natação/fisiologia , Peixe-Zebra
16.
Science ; 343(6167): 197-200, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24408436

RESUMO

Locomotion requires precise control of spinal networks. In tetrapods and bipeds, dynamic regulation of locomotion is simplified by the modular organization of spinal limb circuits, but it is not known whether their predecessors, fish axial circuits, are similarly organized. Here, we demonstrate that the larval zebrafish spinal cord contains distinct, parallel microcircuits for independent control of dorsal and ventral musculature on each side of the body. During normal swimming, dorsal and ventral microcircuits are equally active, but, during postural correction, fish differentially engage these microcircuits to generate torque for self-righting. These findings reveal greater complexity in the axial spinal networks responsible for swimming than previously recognized and suggest an early template of modular organization for more-complex locomotor circuits in later vertebrates.


Assuntos
Rede Nervosa/fisiologia , Medula Espinal/fisiologia , Natação/fisiologia , Peixe-Zebra/fisiologia , Animais , Axônios/fisiologia , Larva/anatomia & histologia , Larva/fisiologia , Neurônios Motores/fisiologia , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Rede Nervosa/anatomia & histologia , Peixe-Zebra/anatomia & histologia
17.
Curr Biol ; 22(18): R796-7, 2012 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-23017991

RESUMO

A recent study suggests that animals can rely on internal expectations about their head movements, rather than vestibular sensations, to see what's in front of them.


Assuntos
Movimentos Oculares , Fixação Ocular , Reflexo Vestíbulo-Ocular/fisiologia , Natação/fisiologia , Animais
18.
J Neurosci ; 31(30): 10776-86, 2011 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-21795530

RESUMO

The cerebellum influences behavior and cognition exclusively via Purkinje cell synapses onto neurons in the deep cerebellar and vestibular nuclei. In contrast with the rich information available about the organization of the cerebellar cortex and its synaptic inputs, relatively little is known about microcircuitry postsynaptic to Purkinje cells. Here we examined the cell types and microcircuits through which Purkinje cells influence an oculomotor behavior controlled by the cerebellum, the horizontal vestibulo-ocular reflex, which involves only two eye muscles. Using a combination of anatomical tracing and electrophysiological recordings in transgenic mouse lines, we identified several classes of neurons in the medial vestibular nucleus that receive Purkinje cell synapses from the cerebellar flocculus. Glycinergic and glutamatergic flocculus target neurons (FTNs) with somata densely surrounded by Purkinje cell terminals projected axons to the ipsilateral abducens and oculomotor nuclei, respectively. Of three additional types of FTNs that were sparsely innervated by Purkinje cells, glutamatergic and glycinergic neurons projected to the contralateral and ipsilateral abducens, respectively, and GABAergic neurons projected to contralateral vestibular nuclei. Densely innervated FTNs had high spontaneous firing rates and pronounced postinhibitory rebound firing, and were physiologically homogeneous, whereas the intrinsic excitability of sparsely innervated FTNs varied widely. Heterogeneity in the molecular expression, physiological properties, and postsynaptic targets of FTNs implies that Purkinje cell activity influences the neural control of eye movements in several distinct ways. These results indicate that the cerebellum regulates a simple reflex behavior via at least five different cell types that are postsynaptic to Purkinje cells.


Assuntos
Cerebelo/citologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Reflexo Vestíbulo-Ocular/fisiologia , Animais , Biofísica , Biotina/análogos & derivados , Biotina/metabolismo , Calbindinas , Cerebelo/ultraestrutura , Dextranos/metabolismo , Estimulação Elétrica , Feminino , Glutamato Descarboxilase/genética , Proteínas da Membrana Plasmática de Transporte de Glicina/genética , Técnicas In Vitro , Proteínas Luminescentes/genética , Masculino , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão/métodos , Rede Nervosa/citologia , Rede Nervosa/ultraestrutura , Neurônios/classificação , Neurônios/ultraestrutura , Técnicas de Patch-Clamp , Rodaminas/metabolismo , Proteína G de Ligação ao Cálcio S100/metabolismo , Sinapses/genética , Sinapses/fisiologia , Núcleos Vestibulares/citologia , Núcleos Vestibulares/fisiologia , Proteínas tau/genética
19.
Neuron ; 71(1): 180-94, 2011 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-21745647

RESUMO

Thalamic afferents supply the cortex with sensory information by contacting both excitatory neurons and inhibitory interneurons. Interestingly, thalamic contacts with interneurons constitute such a powerful synapse that even one afferent can fire interneurons, thereby driving feedforward inhibition. However, the spatial representation of this potent synapse on interneuron dendrites is poorly understood. Using Ca imaging and electron microscopy we show that an individual thalamic afferent forms multiple contacts with the interneuronal proximal dendritic arbor, preferentially near branch points. More contacts are correlated with larger amplitude synaptic responses. Each contact, consisting of a single bouton, can release up to seven vesicles simultaneously, resulting in graded and reliable Ca transients. Computational modeling indicates that the release of multiple vesicles at each contact minimally reduces the efficiency of the thalamic afferent in exciting the interneuron. This strategy preserves the spatial representation of thalamocortical inputs across the dendritic arbor over a wide range of release conditions.


Assuntos
Interneurônios/fisiologia , Neurônios Aferentes/fisiologia , Transmissão Sináptica/fisiologia , Tálamo/fisiologia , Animais , Cálcio/metabolismo , Simulação por Computador , Dendritos/fisiologia , Dendritos/ultraestrutura , Estimulação Elétrica/métodos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Interneurônios/metabolismo , Interneurônios/ultraestrutura , Camundongos , Camundongos Endogâmicos ICR , Microscopia Eletrônica/métodos , Imagem Molecular/métodos , Vias Neurais/metabolismo , Vias Neurais/fisiologia , Vias Neurais/ultraestrutura , Neurônios Aferentes/metabolismo , Neurônios Aferentes/ultraestrutura , Tálamo/metabolismo , Tálamo/ultraestrutura
20.
Neuron ; 68(4): 763-75, 2010 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-21092864

RESUMO

Linking synaptic plasticity with behavioral learning requires understanding how synaptic efficacy influences postsynaptic firing in neurons whose role in behavior is understood. Here, we examine plasticity at a candidate site of motor learning: vestibular nerve synapses onto neurons that mediate reflexive movements. Pairing nerve activity with changes in postsynaptic voltage induced bidirectional synaptic plasticity in vestibular nucleus projection neurons: long-term potentiation relied on calcium-permeable AMPA receptors and postsynaptic hyperpolarization, whereas long-term depression relied on NMDA receptors and postsynaptic depolarization. Remarkably, both forms of plasticity uniformly scaled synaptic currents evoked by pulse trains, and these changes in synaptic efficacy were translated into linear increases or decreases in postsynaptic firing responses. Synapses onto local inhibitory neurons were also plastic but expressed only long-term depression. Bidirectional, linear gain control of vestibular nerve synapses onto projection neurons provides a plausible mechanism for motor learning underlying adaptation of vestibular reflexes.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Plasticidade Neuronal/fisiologia , Filtro Sensorial/fisiologia , Sinapses/fisiologia , Nervo Vestibular/fisiologia , Animais , Potenciação de Longa Duração/fisiologia , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA