Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Immunol Res ; 11(9): 1253-1265, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37379366

RESUMO

Genetically engineered, cytotoxic, adoptively transferred T cells localize to antigen-positive cancer cells inside patients, but tumor heterogeneity and multiple immune escape mechanisms have prevented the eradication of most solid tumor types. More effective, multifunctional engineered T cells are in development to overcome the barriers to the treatment of solid tumors, but the interactions of these highly modified cells with the host are poorly understood. We previously engineered prodrug-activating enzymatic functions into chimeric antigen receptor (CAR) T cells, endowing them with a killing mechanism orthogonal to conventional T-cell cytotoxicity. These drug-delivering cells, termed Synthetic Enzyme-Armed KillER (SEAKER) cells, demonstrated efficacy in mouse lymphoma xenograft models. However, the interactions of an immunocompromised xenograft with such complex engineered T cells are distinct from those in an immunocompetent host, precluding an understanding of how these physiologic processes may affect the therapy. Herein, we expanded the repertoire of SEAKER cells to target solid-tumor melanomas in syngeneic mouse models using specific targeting with T-cell receptor (TCR)-engineered T cells. We demonstrate that SEAKER cells localized specifically to tumors, and activated bioactive prodrugs, despite host immune responses. We additionally show that TCR-engineered SEAKER cells were efficacious in immunocompetent hosts, demonstrating that the SEAKER platform is applicable to many adoptive cell therapies.


Assuntos
Imunoterapia Adotiva , Melanoma , Camundongos , Animais , Humanos , Linfócitos T Citotóxicos , Engenharia Genética , Receptores de Antígenos de Linfócitos T/genética
2.
bioRxiv ; 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37205431

RESUMO

Genetically engineered, cytotoxic, adoptive T cells localize to antigen positive cancer cells inside patients, but tumor heterogeneity and multiple immune escape mechanisms have prevented the eradication of most solid tumor types. More effective, multifunctional engineered T cells are in development to overcome the barriers to the treatment of solid tumors, but the interactions of these highly modified cells with the host are poorly understood. We previously engineered prodrug-activating enzymatic functions into chimeric antigen receptor (CAR) T cells, endowing them with an orthogonal killing mechanism to conventional T-cell cytotoxicity. These drug-delivering cells, termed Synthetic Enzyme-Armed KillER (SEAKER) cells, demonstrated efficacy in mouse lymphoma xenograft models. However, the interactions of an immunocompromised xenograft with such complex engineered T cells are distinct from those in an immunocompetent host, precluding an understanding of how these physiologic processes may affect the therapy. Here, we also expand the repertoire of SEAKER cells to target solid-tumor melanomas in syngeneic mouse models using specific targeting with TCR-engineered T cells. We demonstrate that SEAKER cells localize specifically to tumors, and activate bioactive prodrugs, despite host immune responses. We additionally show that TCR-engineered SEAKER cells are efficacious in immunocompetent hosts, demonstrating that the SEAKER platform is applicable to many adoptive cell therapies.

3.
Cancer Discov ; 13(2): 275-277, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36744318

RESUMO

In the 2 years since the inception of Black in Cancer, we have modeled an action-oriented commitment to improving Black representation across all levels of the cancer spectrum. We reflect on our successes and consider new ways to innovate and inspire the cancer community.


Assuntos
Neoplasias , Humanos , Poder Psicológico
4.
Sci Rep ; 12(1): 14313, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35995959

RESUMO

Novel approaches for malaria prophylaxis remain important. Synthetic DNA-encoded monoclonal antibodies (DMAbs) are a promising approach to generate rapid, direct in vivo host-generated mAbs with potential benefits in production simplicity and distribution coupled with genetic engineering. Here, we explore this approach in a malaria challenge model. We engineered germline-reverted DMAbs based on human mAb clones CIS43, 317, and L9 which target a junctional epitope, major repeat, and minor repeat of the Plasmodium falciparum circumsporozoite protein (CSP) respectively. DMAb variants were encoded into a plasmid vector backbone and their expression and binding profiles were characterized. We demonstrate long-term serological expression of DMAb constructs resulting in in vivo efficacy of CIS43 GL and 317 GL in a rigorous mosquito bite mouse challenge model. Additionally, we engineered an Fc modified variant of CIS43 and L9-based DMAbs to ablate binding to C1q to test the impact of complement-dependent Fc function on challenge outcomes. Complement knockout variant DMAbs demonstrated similar protection to that of WT Fc DMAbs supporting the notion that direct binding to the parasite is sufficient for the protection observed. Further investigation of DMAbs for malaria prophylaxis appears of importance.


Assuntos
Anticorpos Monoclonais , Vacinas Antimaláricas , Malária Falciparum , Animais , Anticorpos Antiprotozoários , DNA , Modelos Animais de Doenças , Humanos , Vacinas Antimaláricas/genética , Malária Falciparum/prevenção & controle , Camundongos , Plasmodium falciparum , Proteínas de Protozoários
5.
Mol Ther Oncolytics ; 24: 218-229, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35071745

RESUMO

Latent Epstein-Barr virus (EBV) infection is associated with several types of cancer. Several clinical studies have targeted EBV antigens as immune therapeutic targets with limited efficacy of EBV malignancies, suggesting that additional targets might be important. BamHI-A rightward frame 1 (BARF1) is an EBV antigen that is highly expressed in EBV+ nasopharyngeal carcinoma (NPC) and EBV-associated gastric carcinoma (EBVaGC). BARF1 antigen can transform human epithelial cells in vivo. BARF1-specific antibodies and cytotoxic T cells were detected in some EBV+ NPC patients. However, BARF1 has not been evaluated as an antigen in the context of therapeutic immunization. Its possible importance in this context is unclear. Here, we developed a synthetic-DNA-based expression cassette as immunotherapy targeting BARF1 (pBARF1). Immunization with pBARF1 induced potent antigen-specific humoral and T cell responses in vivo. Immunization with pBARF1 plasmid impacted tumor progression through the induction of CD8+ T cells in novel BARF1+ carcinoma models. Using an in vivo imaging system, we observed that pBARF1-immunized animals rapidly cleared cancer cells. We demonstrated that pBARF1 can induce antigen-specific immune responses that can impact cancer progression. Further study of this immune target is likely important as part of therapeutic approaches for EBV+ malignancies.

6.
Infect Immun ; 89(10): e0072820, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34152830

RESUMO

Malaria infects millions of people every year, and despite recent advances in controlling disease spread, such as vaccination, it remains a global health concern. The circumsporozoite protein (CSP) has long been acknowledged as a key target in antimalarial immunity. Leveraging the DNA vaccine platform against this formidable pathogen, the following five synthetic DNA vaccines encoding variations of CSP were designed and studied: 3D7, GPI1, ΔGPI, TM, and DD2. Among the single CSP antigen constructs, a range of immunogenicity was observed with ΔGPI generating the most robust immunity. In an intravenous (i.v.) sporozoite challenge, the best protection among vaccinated mice was achieved by ΔGPI, which performed almost as well as the monoclonal antibody 311 (MAb 311) antibody control. Further analyses revealed that ΔGPI develops high-molecular-weight multimers in addition to monomeric CSP. We then compared the immunity generated by ΔGPI versus synDNA mimics for the antimalaria vaccines RTS,S and R21. The anti-CSP antibody responses induced were similar among these three immunogens. T cell responses demonstrated that ΔGPI induced a more focused anti-CSP response. In an infectious mosquito challenge, all three of these constructs generated inhibition of liver-stage infection as well as immunity from blood-stage parasitemia. This study demonstrates that synDNA mimics of complex malaria immunogens can provide substantial protection as can a novel synDNA vaccine ΔGPI.


Assuntos
Imunogenicidade da Vacina/imunologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Malária/imunologia , Proteínas de Protozoários/imunologia , Vacinas Sintéticas/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antiprotozoários/imunologia , Linhagem Celular , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Plasmodium berghei/imunologia , Plasmodium falciparum/imunologia , Esporozoítos/imunologia , Vacinação/métodos
7.
mBio ; 12(2)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33727348

RESUMO

Monoclonal antibody (MAb) 2C7 recognizes a lipooligosaccharide epitope expressed by most clinical Neisseria gonorrhoeae isolates and mediates complement-dependent bactericidal activity. We recently showed that a recombinant human IgG1 chimeric variant of MAb 2C7 containing an E430G Fc modification (2C7_E430G), which enhances complement activation, outperformed the parental MAb 2C7 (2C7_WT) in vivo Because natural infection with N. gonorrhoeae often does not elicit protective immunity and reinfections are common, approaches that prolong bacterial control in vivo are of great interest. Advances in DNA-based approaches have demonstrated the combined benefit of genetic engineering, formulation optimizations, and facilitated delivery via CELLECTRA-EP technology, which can induce robust in vivo expression of protective DNA-encoded monoclonal antibodies (DMAbs) with durable serum activity relative to traditional recombinant MAb therapies. Here, we created optimized 2C7-derived DMAbs encoding the parental Fc (2C7_WT) or complement-enhancing Fc variants (2C7_E430G and 2C7_E345K). 2C7 DMAbs were rapidly generated and detected throughout the 4-month study. While all complement-engaging 2C7 variants facilitated rapid clearance following primary N. gonorrhoeae challenge (day 8 after DMAb administration), the complement-enhancing 2C7_E430G variant demonstrated significantly higher potency against mice rechallenged 65 days after DMAb administration. Passive intravenous transfer of in vivo-produced, purified 2C7 DMAbs confirmed the increased potency of the complement-enhancing variants. This study highlights the ability of the DMAb platform to launch the in vivo production of antibodies engineered to promote and optimize downstream innate effector mechanisms such as complement-mediated killing, leading to hastened bacterial elimination.IMPORTANCENeisseria gonorrhoeae has become resistant to most antibiotics in clinical use. Currently, there is no safe and effective vaccine against gonorrhea. Measures to prevent the spread of gonorrhea are a global health priority. A monoclonal antibody (MAb) called 2C7, directed against a lipooligosaccharide glycan epitope expressed by most clinical isolates, displays complement-dependent bactericidal activity and hastens clearance of gonococcal vaginal colonization in mice. Fc mutations in a human IgG1 chimeric version of MAb 2C7 further enhance complement activation, and the resulting MAb displays greater activity than wild-type MAb 2C7 in vivo Here, we utilized a DNA-encoded MAb (DMAb) construct designed to launch production and assembly of "complement-enhanced" chimeric MAb 2C7 in vivo The ensuing rapid and sustained MAb 2C7 expression attenuated gonococcal colonization in mice at 8 days as well as 65 days postadministration. The DMAb system may provide an effective, economical platform to deliver MAbs for durable protection against gonorrhea.


Assuntos
Anticorpos Antibacterianos/administração & dosagem , Anticorpos Monoclonais/administração & dosagem , Vacinas Bacterianas/imunologia , Epitopos/imunologia , Gonorreia/prevenção & controle , Imunização Passiva , Imunoglobulina G/administração & dosagem , Neisseria gonorrhoeae/imunologia , Animais , Anticorpos Antibacterianos/genética , Anticorpos Antibacterianos/imunologia , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Antígenos de Bactérias/imunologia , Vacinas Bacterianas/administração & dosagem , Ativação do Complemento , Feminino , Gonorreia/imunologia , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Camundongos , Camundongos Endogâmicos BALB C
8.
Cancer Immunol Res ; 8(11): 1354-1364, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32913042

RESUMO

Cytolytic T cells (CTL) play a pivotal role in surveillance against tumors. Induction of CTL responses by vaccination may be challenging, as it requires direct transduction of target cells or special adjuvants to promote cross-presentation. Here, we observed induction of robust CTL responses through electroporation-facilitated, DNA-launched nanoparticle vaccination (DLnano-vaccines). Electroporation was observed to mediate transient tissue apoptosis and macrophage infiltration, which were deemed essential to the induction of CTLs by DLnano-vaccines through a systemic macrophage depletion study. Bolus delivery of protein nano-vaccines followed by electroporation, however, failed to induce CTLs, suggesting direct in vivo production of nano-vaccines may be required. Following these observations, new DLnano-vaccines scaffolding immunodominant melanoma Gp100 and Trp2 epitopes were designed and shown to induce more potent and consistent epitope-specific CTL responses than the corresponding DNA monomeric vaccines or CpG-adjuvanted peptide vaccines. DNA, but not recombinant protein, nano-vaccinations induced CTL responses to these epitopes and suppressed melanoma tumor growth in mouse models in a CD8+ T-cell-dependent fashion. Further studies to explore the use of DLnano-vaccines against other cancer targets and the biology with which they induce CTLs are important.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Nanopartículas/metabolismo , Neoplasias/imunologia , Linfócitos T/imunologia , Vacinas de DNA/uso terapêutico , Animais , Feminino , Humanos , Camundongos , Vacinas de DNA/farmacologia
9.
Nat Commun ; 11(1): 2601, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32433465

RESUMO

The coronavirus family member, SARS-CoV-2 has been identified as the causal agent for the pandemic viral pneumonia disease, COVID-19. At this time, no vaccine is available to control further dissemination of the disease. We have previously engineered a synthetic DNA vaccine targeting the MERS coronavirus Spike (S) protein, the major surface antigen of coronaviruses, which is currently in clinical study. Here we build on this prior experience to generate a synthetic DNA-based vaccine candidate targeting SARS-CoV-2 S protein. The engineered construct, INO-4800, results in robust expression of the S protein in vitro. Following immunization of mice and guinea pigs with INO-4800 we measure antigen-specific T cell responses, functional antibodies which neutralize the SARS-CoV-2 infection and block Spike protein binding to the ACE2 receptor, and biodistribution of SARS-CoV-2 targeting antibodies to the lungs. This preliminary dataset identifies INO-4800 as a potential COVID-19 vaccine candidate, supporting further translational study.


Assuntos
Antígenos Virais/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas de DNA/imunologia , Vacinas Virais/imunologia , Enzima de Conversão de Angiotensina 2 , Animais , Anticorpos Neutralizantes/imunologia , Antígenos Virais/química , Vacinas contra COVID-19 , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Mapeamento de Epitopos , Cobaias , Imunidade Humoral , Imunoglobulina G/imunologia , Pulmão/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Coronavírus da Síndrome Respiratória do Oriente Médio , Modelos Animais , Peptidil Dipeptidase A/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Vacinas Virais/química
10.
BioDrugs ; 34(3): 295, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32240503

RESUMO

The article In Vivo Delivery of Nucleic Acid-Encoded Monoclonal Antibodies, written by Ami Patel, Mamadou A. Bah and David B.

11.
BioDrugs ; 34(3): 273-293, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32157600

RESUMO

Antibody immunotherapy is revolutionizing modern medicine. The field has advanced dramatically over the past 40 years, driven in part by major advances in isolation and manufacturing technologies that have brought these important biologics to the forefront of modern medicine. However, the global uptake of monoclonal antibody (mAb) biologics is impeded by biophysical and biochemical liabilities, production limitations, the need for cold-chain storage and transport, as well as high costs of manufacturing and distribution. Some of these hurdles may be overcome through transient in vivo gene delivery platforms, such as non-viral synthetic plasmid DNA and messenger RNA vectors that are engineered to encode optimized mAb genes. These approaches turn the body into a biological factory for antibody production, eliminating many of the steps involved in bioprocesses and providing several other significant advantages, and differ from traditional gene therapy (permanent delivery) approaches. In this review, we focus on nucleic acid delivery of antibody employing synthetic plasmid DNA vector platforms, and RNA delivery, these being important approaches that are advancing simple, rapid, in vivo expression and having an impact in animal models of infectious diseases and cancer, among others.


Assuntos
Anticorpos Monoclonais/genética , DNA/administração & dosagem , Portadores de Fármacos , Técnicas de Transferência de Genes , Terapia Genética/métodos , Imunoterapia/métodos , Ácidos Nucleicos/administração & dosagem , RNA Mensageiro/administração & dosagem , Animais , Benzenossulfonatos , DNA/genética , Vetores Genéticos/administração & dosagem , Camundongos , RNA Mensageiro/genética
12.
Vaccines (Basel) ; 8(1)2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31936739

RESUMO

The need for a malaria vaccine is indisputable. A single vaccine for Plasmodium pre-erythrocytic stages targeting the major sporozoite antigen circumsporozoite protein (CSP) has had partial success. Additionally, CD8+ T cells targeting liver-stage (LS) antigens induced by live attenuated sporozoite vaccines were associated with protection in human challenge experiments. To further evaluate protection mediated by LS antigens, we focused on exported pre-erythrocytic proteins (exported protein 1 (EXP1), profilin (PFN), exported protein 2 (EXP2), inhibitor of cysteine proteases (ICP), transmembrane protein 21 (TMP21), and upregulated in infective sporozoites-3 (UIS3)) expressed in all Plasmodium species and designed optimized, synthetic DNA (synDNA) immunogens. SynDNA antigen cocktails were tested with and without the molecular adjuvant plasmid IL-33. Immunized animals developed robust T cell responses including induction of antigen-specific liver-localized CD8+ T cells, which were enhanced by the co-delivery of plasmid IL-33. In total, 100% of mice in adjuvanted groups and 71%-88% in non-adjuvanted groups were protected from blood-stage disease following Plasmodium yoelii sporozoite challenge. This study supports the potential of synDNA LS antigens as vaccine components for malaria parasite infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA