Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Front Neurosci ; 16: 948523, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36188463

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disorder, pathologically hallmarked by the loss of dopamine neurons in the substantia nigra (SN) and alpha-synuclein aggregation. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a common target to treat the motor symptoms in PD. However, we have less understanding of the cellular changes in the STN during PD, and the impact of DBS on the STN and SN is limited. We examined cellular changes in the SN and STN in PD patients with and without STN-DBS treatment. Post-mortem brain tissues from 6 PD non-STN-DBS patients, 5 PD STN-DBS patients, and 6 age-matched controls were stained with markers for neurodegeneration (tyrosine hydroxylase, alpha-synuclein, and neuronal loss) and astrogliosis (glial fibrillary acidic protein). Changes were assessed using quantitative and semi-quantitative microscopy techniques. As expected, significant neuronal cell loss, alpha-synuclein pathology, and variable astrogliosis were observed in the SN in PD. No neuronal cell loss or astrogliosis was observed in the STN, although alpha-synuclein deposition was present in the STN in all PD cases. DBS did not alter neuronal loss, astrogliosis, or alpha-synuclein pathology in either the SN or STN. This study reports selective pathology in the STN with deposits of alpha-synuclein in the absence of significant neuronal cell loss or inflammation in PD. Despite being effective for the treatment of PD, this small post-mortem study suggests that DBS of the STN does not appear to modulate histological changes in astrogliosis or neuronal survival, suggesting that the therapeutic effects of DBS mechanism may transiently affect STN neural activity.

2.
Brain Commun ; 4(4): fcac189, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35950093

RESUMO

Chronic traumatic encephalopathy neuropathologic change can only be definitively diagnosed post-mortem. It has been associated with repetitive mild neurotrauma sustained in amateur and professional contact, collision and combat sports, although it has also been documented in people with a single severe traumatic brain injury and in some people with no known history of brain injury. The characteristic neuropathology is an accumulation of perivascular neuronal and astrocytic phosphorylated tau in the depths of the cortical sulci. The tau-immunopositive neurons and astrocytes that are considered pathognomonic for chronic traumatic encephalopathy are morphologically indistinguishable from Alzheimer-related neurofibrillary tangles and ageing-related tau astrogliopathy, respectively, although they are found in different spatial distributions throughout the cortex. The Sydney Brain Bank collection consists of neurodegenerative diseases and neurologically normal controls. We screened 636 of these cases for chronic traumatic encephalopathy neuropathologic change. A subset of 109 cases had a known history of traumatic brain injury. Three cortical regions were screened for the presence of neuronal and astrocytic phosphorylated tau according to the current 2021 National Institute on Neurological Disorders and Stroke/National Institute of Biomedical Imaging and Bioengineering consensus criteria for chronic traumatic encephalopathy. Five cases (0.79%) showed pathological evidence of chronic traumatic encephalopathy and three of these had a history of traumatic brain injury. Three cases had coexisting Alzheimer's and/or Lewy body disease pathology meeting criteria for neurodegenerative disease. Another eight cases almost met criteria for chronic traumatic encephalopathy neuropathological change except for an absence of neuronal tau or a strict perivascular arrangement. Ageing-related tau astrogliopathy was found in all eight cases as a coexisting neuropathology. Traumatic brain injury was associated with increased odds ratio [1.79, confidence interval 1.18-2.72] of having a higher neurofibrillary tangle stage and phosphorylated TAR DNA binding protein 43 (OR 2.48, confidence interval 1.35-4.54). Our study shows a very low rate of chronic traumatic encephalopathy neuropathological change in brains with or without neurodegenerative disease from the Sydney Brain Bank. Our evidence suggests that isolated traumatic brain injury in the general population is unlikely to cause chronic traumatic encephalopathy neuropathologic change but may be associated with increased brain ageing.

3.
Brain Behav ; 10(7): e01672, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32484608

RESUMO

INTRODUCTION: One of the major neuropathological features of Alzheimer's disease (AD) is the accumulation of amyloid-ß (Aß) protein in the brain. Evidence suggests that the low-density lipoprotein receptor-associated protein (RAP) binds strongly to Aß and enhances its cellular uptake and that decreased RAP expression correlates with increased Aß production in animal models of AD. METHODS: The current study examined whether RAP levels change in AD human brain tissue and whether they are related to the amount of AD pathology. RAP and NeuN levels were determined by Western blot, while low-density lipoprotein receptor-related protein 1 (LRP1), tau and Aß levels were determined by ELISA in the temporal cortex of 17 AD and 16 control cases. RESULTS: An increase in total Aß and insoluble and soluble tau protein was observed in AD brain tissue. In contrast, RAP levels were significantly decreased in AD brain tissue compared to controls. Correlation analysis revealed that levels of RAP correlated with both total Aß and soluble and insoluble tau levels. Neither LRP1 nor NeuN levels were significantly altered in AD brain tissue homogenates and did not correlate with Aß or tau protein levels. CONCLUSION: Reduction in RAP may contribute to the accumulation and aggregation of Aß in the AD brain.


Assuntos
Doença de Alzheimer , Encéfalo/metabolismo , Proteínas tau , Peptídeos beta-Amiloides/metabolismo , Animais , Humanos , Proteína Associada a Proteínas Relacionadas a Receptor de LDL , Proteínas tau/metabolismo
4.
Neurobiol Aging ; 89: 129-131, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31813628

RESUMO

Clusterin (CLU) is a pleiotropic glycoprotein that exists as a secreted, neuroprotective or intracellular, neurotoxic form, both of which increase in Alzheimer's disease (AD) causing increased Aß42 deposition. No studies have assessed the association between functionally distinct alloforms of CLU and tau protein or neuronal loss, despite its intracellular toxicity. We confirm previous reports of significant increases in both intracellular CLU and secreted CLU in the brain tissue of individuals with AD (p < 0.01) and show no association with neuronal loss. The increase in CLU alloforms was most closely associated with increases in both insoluble Aß42 and tau protein (p = 0.001), supporting its role in AD pathogenesis. Further research should investigate whether altering human CLU levels may have viability as a therapeutic option for AD.


Assuntos
Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Clusterina/metabolismo , Fragmentos de Peptídeos/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Neurônios/patologia
5.
PLoS One ; 8(10): e76455, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24146872

RESUMO

The stratification of patients with acute lymphoblastic leukemia (ALL) into treatment risk groups based on quantification of minimal residual disease (MRD) after induction therapy is now well accepted but the relapse rate of about 20% in intermediate risk patients remains a challenge. The purpose of this study was to further improve stratification by MRD measurement at an earlier stage. MRD was measured in stored day 15 bone marrow samples for pediatric patients enrolled on ANZCHOG ALL8 using Real-time Quantitative PCR to detect immunoglobulin and T-cell receptor gene rearrangements with the same assays used at day 33 and day 79 in the original MRD stratification. MRD levels in bone marrow at day 15 and 33 were highly predictive of outcome in 223 precursor B-ALL patients (log rank Mantel-Cox tests both P<0.001) and identified patients with poor, intermediate and very good outcomes. The combined use of MRD at day 15 (≥ 1 × 10(-2)) and day 33 (≥ 5 × 1(-5)) identified a subgroup of medium risk precursor B-ALL patients as poor MRD responders with 5 year relapse-free survival of 55% compared to 84% for other medium risk patients (log rank Mantel-Cox test, P = 0.0005). Risk stratification of precursor B-ALL but not T-ALL could be improved by using MRD measurement at day 15 and day 33 instead of day 33 and day 79 in similar BFM-based protocols for children with this disease.


Assuntos
Neoplasia Residual/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Criança , Estudos de Coortes , Feminino , Humanos , Masculino , Neoplasia Residual/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Prognóstico , Recidiva , Fatores de Risco
6.
Cancer Discov ; 2(1): 47-55, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22585168

RESUMO

UNLABELLED: The relative timing of genetic alterations that contribute to follicular lymphoma remains unknown. We analyzed a donor-recipient pair who both developed grade 2/3A follicular lymphoma 7 years after allogeneic transplantation and donor lymphocyte infusions. Both patients harbored identical BCL2/IGH rearrangements also present in 1 in 2,000 cells in the donor lymphocyte infusion, and the same V(D)J rearrangement, which underwent somatic hypermutation both before and after clonal divergence. Exome sequencing of both follicular lymphomas identified 15 shared mutations, of which 14 (including alterations in EP300 and KLHL6) were recovered from the donor lymphocyte infusion by ultra-deep sequencing (average read coverage, 361,723), indicating acquisition at least 7 years before clinical presentation. Six additional mutations were present in only one follicular lymphoma and not the donor lymphocyte infusion, including an ARID1A premature stop, indicating later acquisition during clonal divergence. Thus, ultrasensitive sequencing can map clonal evolution within rare subpopulations during human lymphomagenesis in vivo. SIGNIFICANCE: For the first time, we define the molecular ontogeny of follicular lymphoma during clonal evolution in vivo. By using ultrasensitive mutation detection, we mapped the time-course of somatic alterations after passage of a malignant ancestor by hematopoietic cell transplantation.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Linfoma Folicular/genética , Adulto , Clonagem Molecular , Feminino , Genes de Imunoglobulinas , Humanos , Doadores Vivos , Linfoma Folicular/patologia , Translocação Genética , Recombinação V(D)J
7.
Br J Haematol ; 146(3): 292-9, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19500099

RESUMO

Detection of minimal residual disease (MRD) after induction and consolidation therapy is highly predictive of outcome for childhood acute lymphoblastic leukaemia (ALL) and is used to identify patients at high risk of relapse in several current clinical trials. To evaluate the prognostic significance of MRD at other treatment phases, MRD was measured by real-time quantitative polymerase chain reaction on a selected group of 108 patients enrolled on the Australian and New Zealand Children's Cancer Study Group Study VII including 36 patients with a bone marrow or central nervous system relapse and 72 matched patients in first remission. MRD was prognostic of outcome at all five treatment phases tested: at day 15 (MRD > or = 5 x 10(-2), log rank P < 0.0001), day 35 (> or =1 x 10(-2), P = 0.0001), 4 months (> or =5 x 10(-4), P < 0.0001), 12 months (MRD > or = 1 x 10(-4), P = 0.006) and 24 months (MRD > or = 1 x 10(-4), P < 0.0001). Day 15 was the best early MRD time-point to differentiate between patients with high, intermediate and low risk of relapse. MRD testing at 12 and particularly at 24 months, detected molecular relapses in some patients up to 6 months before clinical relapse. This raised the question of whether a strategy of late monitoring and salvage therapy will improve outcome.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Adolescente , Estudos de Casos e Controles , Criança , Pré-Escolar , Terapia Combinada , Intervalo Livre de Doença , Feminino , Humanos , Lactente , Masculino , Neoplasia Residual , Reação em Cadeia da Polimerase , Leucemia-Linfoma Linfoblástico de Células Precursoras/radioterapia , Recidiva , Fatores de Risco , Fatores de Tempo , Resultado do Tratamento
8.
J Mol Diagn ; 11(3): 194-200, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19324994

RESUMO

Molecular markers for minimal residual disease in B-lineage acute lymphoblastic leukemia were identified by determining, at the time of diagnosis, the repertoire of rearrangements of the immunoglobulin heavy chain (IGH) gene using segment-specific variable (V), diversity (D), and junctional (J) primers in two different studies that involved a total study population of 75 children and 18 adults. This strategy, termed repertoire analysis, was compared with the conventional strategy of identifying markers using family-specific V, D, and J primers for a variety of antigen receptor genes. Repertoire analysis detected significantly more markers for the major leukemic clone than did the conventional strategy, and one or more IgH rearrangements that were suitable for monitoring the major clone were detected in 96% of children and 94% of adults. Repertoire analysis also detected significantly more IGH markers for minor clones. Some minor clones were quite large and a proportion of them would not be able to be detected by a minimal residual disease test directed to the marker for the major clone. IGH repertoire analysis at diagnosis has potential advantages for the identification of molecular markers for the quantification of minimal residual disease in acute lymphoblastic leukemia cases. An IGH marker enables very sensitive quantification of the major leukemic clone, and the detection of minor clones may enable early identification of additional patients who are prone to relapse.


Assuntos
Linhagem da Célula , Rearranjo Gênico do Linfócito B , Cadeias Pesadas de Imunoglobulinas/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Adulto , Criança , Comportamento Cooperativo , DNA de Neoplasias/genética , Marcadores Genéticos , Genoma Humano/genética , Humanos , Neoplasia Residual/genética
9.
Blood ; 110(2): 632-9, 2007 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-17371950

RESUMO

Relapse following remission induction chemotherapy remains a barrier to survival in approximately 20% of children suffering from acute lymphoblastic leukemia (ALL). To investigate the mechanism of relapse, 27 matched diagnosis and relapse ALL samples were analyzed for clonal populations using polymerase chain reaction (PCR)-based detection of multiple antigen receptor gene rearrangements. These clonal markers revealed the emergence of apparently new populations at relapse in 13 patients. More sensitive clone-specific PCR revealed that, in 8 cases, these "relapse clones" were present at diagnosis and a significant relationship existed between presence of the relapse clone at diagnosis and time to first relapse (P < .007). Furthermore, in cases where the relapse clone could be quantified, time to first relapse was dependent on the amount of the relapse clone at diagnosis (r = -0.84; P = .018). This observation, together with demonstrated differential chemosensitivity between subclones at diagnosis, argues against therapy-induced acquired resistance as the mechanism of relapse in the informative patients. Instead these data indicate that relapse in ALL patients may commonly involve selection of a minor intrinsically resistant subclone that is undetectable by routine PCR-based methods. Relapse prediction may be improved with strategies to detect minor potentially resistant subclones early during treatment, hence allowing intensification of therapy.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Idade de Início , Linfócitos B/imunologia , Pré-Escolar , Células Clonais , Feminino , Rearranjo Gênico , Humanos , Imunoglobulinas/sangue , Imunofenotipagem , Lactente , Masculino , Reação em Cadeia da Polimerase , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Receptores de Antígenos/genética , Recidiva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA