Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(5)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38794340

RESUMO

Pharmacy compounding, the art and science of preparing customized medications to meet individual patient needs, is on the verge of transformation. Traditional methods of compounding often involve manual and time-consuming processes, presenting challenges in terms of consistency, dosage accuracy, quality control, contamination, and scalability. However, the emergence of cutting-edge technologies has paved a way for a new era for pharmacy compounding, promising to redefine the way medications are prepared and delivered as pharmacy-tailored personalized medicines. In this multi-site study, more than 30 hospitals and community pharmacies from eight countries in Europe utilized a novel automated dosing approach inspired by 3D printing for the compounding of non-sterile propranolol hydrochloride tablets. CuraBlend® excipient base, a GMP-manufactured excipient base (pharma-ink) intended for automated compounding applications, was used. A standardized study protocol to test the automated dosing of tablets with variable weights was performed in all participating pharmacies in four different iterative phases. Integrated quality control was performed with an in-process scale and NIR spectroscopy supported by HPLC content uniformity measurements. In total, 6088 propranolol tablets were produced at different locations during this study. It was shown that the dosing accuracy of the process increased from about 90% to 100% from Phase 1 to Phase 4 by making improvements to the formulation and the hardware solutions. The results indicate that through this automated and quality controlled compounding approach, extemporaneous pharmacy manufacturing can take a giant leap forward towards automation and digital manufacture of dosage forms in hospital pharmacies and compounding pharmacies.

2.
Environ Technol ; 43(9): 1352-1358, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32975486

RESUMO

Domestic, agricultural and industrial water activities lead to organic and inorganic pollution of the environment. Biotreatment of municipal wastewater with the potential production of biomass is a valuable feature of microalgae. In this study we evaluated the effects of wavelength and light intensity on phosphate and ammonium removal on the one hand, and biomass and protein production on the other hand by Spirulina platensis in municipal wastewater treatment under semi batch cultivation. S. platensis was inoculated at 40% in artificial wastewater open pond system. Red, blue and purple light with 3800, 4800 and 5800 lux light intensity under 12 h light and 12 h darkness were investigated. Cultivation was conducted in semi-batch conditions; after four days cultivation, one third of the culture was replaced with fresh medium. The highest biomass and protein concentrations were observed under blue light at 5800 lux light intensity, 5.45 and 3 g/l respectively cumulatively; while the highest amount of phosphate and ammonium removal were about 145 and 218 mg/l under purple light at 5800 lux intensity, respectively. The amounts of biomass and protein produced, as well as phosphate and ammonium removed, are therefore impacted by wavelength, light intensity, results show that light intensity and wavelength can be customized to reach on the one hand the highest biomass and protein production, and on the other hand to maximize the removal of phosphorous and ammonium.


Assuntos
Microalgas , Biomassa , Nitrogênio , Fosfatos , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA