Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; : 168640, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38844044

RESUMO

Computational free energy-based methods have the potential to significantly improve throughput and decrease costs of protein design efforts. Such methods must reach a high level of reliability, accuracy, and automation to be effectively deployed in practical industrial settings in a way that impacts protein design projects. Here, we present a benchmark study for the calculation of relative changes in protein-protein binding affinity for single point mutations across a variety of systems from the literature, using free energy perturbation (FEP+) calculations. We describe a method for robust treatment of alternate protonation states for titratable amino acids, which yields improved correlation with and reduced error compared to experimental binding free energies. Following careful analysis of the largest outlier cases in our dataset, we assess limitations of the default FEP+ protocols and introduce an automated script which identifies probable outlier cases that may require additional scrutiny and calculates an empirical correction for a subset of charge-related outliers. Through a series of three additional case study systems, we discuss how protein FEP+ can be applied to real-world protein design projects, and suggest areas of further study.

2.
bioRxiv ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38712280

RESUMO

Computational free energy-based methods have the potential to significantly improve throughput and decrease costs of protein design efforts. Such methods must reach a high level of reliability, accuracy, and automation to be effectively deployed in practical industrial settings in a way that impacts protein design projects. Here, we present a benchmark study for the calculation of relative changes in protein-protein binding affinity for single point mutations across a variety of systems from the literature, using free energy perturbation (FEP+) calculations. We describe a method for robust treatment of alternate protonation states for titratable amino acids, which yields improved correlation with and reduced error compared to experimental binding free energies. Following careful analysis of the largest outlier cases in our dataset, we assess limitations of the default FEP+ protocols and introduce an automated script which identifies probable outlier cases that may require additional scrutiny and calculates an empirical correction for a subset of charge-related outliers. Through a series of three additional case study systems, we discuss how protein FEP+ can be applied to real-world protein design projects, and suggest areas of further study.

3.
Res Sq ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38463964

RESUMO

Self-recognition is a fundamental cellular process across evolution and forms the basis of neuronal self-avoidance1-4. Clustered protocadherins (Pcdh), comprising a large family of isoform-specific homophilic recognition molecules, play a pivotal role in neuronal self-avoidance required for mammalian brain development5-7. The probabilistic expression of different Pcdh isoforms confers unique identities upon neurons and forms the basis for neuronal processes to discriminate between self and non-self5,6,8. Whether this self-recognition mechanism exists in astrocytes, the other predominant cell type of the brain, remains unknown. Here, we report that a specific isoform in the Pcdhγ cluster, γC3, is highly enriched in human and murine astrocytes. Through genetic manipulation, we demonstrate that γC3 acts autonomously to regulate astrocyte morphogenesis in the mouse visual cortex. To determine if γC3 proteins act by promoting recognition between processes of the same astrocyte, we generated pairs of γC3 chimeric proteins capable of heterophilic binding to each other, but incapable of homophilic binding. Co-expressing complementary heterophilic binding isoform pairs in the same γC3 null astrocyte restored normal morphology. By contrast, chimeric γC3 proteins individually expressed in single γC3 null mutant astrocytes did not. These data establish that self-recognition is essential for astrocyte development in the mammalian brain and that, by contrast to neuronal self-recognition, a single Pcdh isoform is both necessary and sufficient for this process.

4.
J Mol Biol ; 435(15): 168187, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37355034

RESUMO

The strength of binding between human angiotensin converting enzyme 2 (ACE2) and the receptor binding domain (RBD) of viral spike protein plays a role in the transmissibility of the SARS-CoV-2 virus. In this study we focus on a subset of RBD mutations that have been frequently observed in infected individuals and probe binding affinity changes to ACE2 using surface plasmon resonance (SPR) measurements and free energy perturbation (FEP) calculations. Our SPR results are largely in accord with previous studies but discrepancies do arise due to differences in experimental methods and to protocol differences even when a single method is used. Overall, we find that FEP performance is superior to that of other computational approaches examined as determined by agreement with experiment and, in particular, by its ability to identify stabilizing mutations. Moreover, the calculations successfully predict the observed cooperative stabilization of binding by the Q498R N501Y double mutant present in Omicron variants and offer a physical explanation for the underlying mechanism. Overall, our results suggest that despite the significant computational cost, FEP calculations may offer an effective strategy to understand the effects of interfacial mutations on protein-protein binding affinities and, hence, in a variety of practical applications such as the optimization of neutralizing antibodies.


Assuntos
Enzima de Conversão de Angiotensina 2 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/genética , Mutação , Ligação Proteica , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Domínios Proteicos
5.
Cell Rep ; 39(1): 110618, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35385751

RESUMO

Neurons in the developing brain express many different cell adhesion molecules (CAMs) on their surfaces. CAM-binding affinities can vary by more than 200-fold, but the significance of these variations is unknown. Interactions between the immunoglobulin superfamily CAM DIP-α and its binding partners, Dpr10 and Dpr6, control synaptic targeting and survival of Drosophila optic lobe neurons. We design mutations that systematically change interaction affinity and analyze function in vivo. Reducing affinity causes loss-of-function phenotypes whose severity scales with the magnitude of the change. Synaptic targeting is more sensitive to affinity reduction than is cell survival. Increasing affinity rescues neurons that would normally be culled by apoptosis. By manipulating CAM expression together with affinity, we show that the key parameter controlling circuit assembly is surface avidity, which is the strength of adherence between cell surfaces. We conclude that CAM binding affinities and expression levels are finely tuned for function during development.


Assuntos
Proteínas de Drosophila , Animais , Adesão Celular , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Sobrevivência Celular , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Neurônios/metabolismo
6.
Elife ; 112022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35253643

RESUMO

The stochastic expression of fewer than 60 clustered protocadherin (cPcdh) isoforms provides diverse identities to individual vertebrate neurons and a molecular basis for self-/nonself-discrimination. cPcdhs form chains mediated by alternating cis and trans interactions between apposed membranes, which has been suggested to signal self-recognition. Such a mechanism requires that cPcdh cis dimers form promiscuously to generate diverse recognition units, and that trans interactions have precise specificity so that isoform mismatches terminate chain growth. However, the extent to which cPcdh interactions fulfill these requirements has not been definitively demonstrated. Here, we report biophysical experiments showing that cPcdh cis interactions are promiscuous, but with preferences favoring formation of heterologous cis dimers. Trans homophilic interactions are remarkably precise, with no evidence for heterophilic interactions between different isoforms. A new C-type cPcdh crystal structure and mutagenesis data help to explain these observations. Overall, the interaction characteristics we report for cPcdhs help explain their function in neuronal self-/nonself-discrimination.


Assuntos
Caderinas , Protocaderinas , Caderinas/metabolismo , Comunicação Celular , Neurônios/metabolismo , Isoformas de Proteínas/metabolismo
7.
AIChE J ; 67(12): e17440, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34898670

RESUMO

Antiviral monoclonal antibody (mAb) discovery enables the development of antibody-based antiviral therapeutics. Traditional antiviral mAb discovery relies on affinity between antibody and a viral antigen to discover potent neutralizing antibodies, but these approaches are inefficient because many high affinity mAbs have no neutralizing activity. We sought to determine whether screening for anti-SARS-CoV-2 mAbs at reduced pH could provide more efficient neutralizing antibody discovery. We mined the antibody response of a convalescent COVID-19 patient at both physiological pH (7.4) and reduced pH (4.5), revealing that SARS-CoV-2 neutralizing antibodies were preferentially enriched in pH 4.5 yeast display sorts. Structural analysis revealed that a potent new antibody called LP5 targets the SARS-CoV-2 N-terminal domain supersite via a unique binding recognition mode. Our data combine with evidence from prior studies to support antibody screening at pH 4.5 to accelerate antiviral neutralizing antibody discovery.

8.
Cell Rep ; 37(3): 109828, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34686348

RESUMO

Synaptic connectivity within adult circuits exhibits a remarkable degree of cellular and subcellular specificity. We report that the axon guidance receptor Robo2 plays a role in establishing synaptic specificity in hippocampal CA1. In vivo, Robo2 is present and required postsynaptically in CA1 pyramidal neurons (PNs) for the formation of excitatory (E) but not inhibitory (I) synapses, specifically in proximal but not distal dendritic compartments. In vitro approaches show that the synaptogenic activity of Robo2 involves a trans-synaptic interaction with presynaptic Neurexins, as well as binding to its canonical extracellular ligand Slit. In vivo 2-photon Ca2+ imaging of CA1 PNs during spatial navigation in awake behaving mice shows that preventing Robo2-dependent excitatory synapse formation cell autonomously during development alters place cell properties of adult CA1 PNs. Our results identify a trans-synaptic complex linking the establishment of synaptic specificity to circuit function.


Assuntos
Região CA1 Hipocampal/metabolismo , Células Piramidais/metabolismo , Receptores Imunológicos/metabolismo , Sinapses/metabolismo , Animais , Região CA1 Hipocampal/citologia , Região CA3 Hipocampal/citologia , Região CA3 Hipocampal/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Potenciais Pós-Sinápticos Excitadores , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Moléculas de Adesão de Célula Nervosa/genética , Moléculas de Adesão de Célula Nervosa/metabolismo , Células de Lugar/metabolismo , Receptores Imunológicos/genética , Proteínas Roundabout
9.
Cell Rep ; 37(5): 109928, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34706271

RESUMO

Antibodies that potently neutralize SARS-CoV-2 target mainly the receptor-binding domain or the N-terminal domain (NTD). Over a dozen potently neutralizing NTD-directed antibodies have been studied structurally, and all target a single antigenic supersite in NTD (site 1). Here, we report the cryo-EM structure of a potent NTD-directed neutralizing antibody 5-7, which recognizes a site distinct from other potently neutralizing antibodies, inserting a binding loop into an exposed hydrophobic pocket between the two sheets of the NTD ß sandwich. Interestingly, this pocket was previously identified as the binding site for hydrophobic molecules, including heme metabolites, but we observe that their presence does not substantially impede 5-7 recognition. Mirroring its distinctive binding, antibody 5-7 retains neutralization potency with many variants of concern (VOCs). Overall, we reveal that a hydrophobic pocket in NTD proposed for immune evasion can be used by the immune system for recognition.

10.
bioRxiv ; 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34230927

RESUMO

Antibodies that potently neutralize SARS-CoV-2 target mainly the receptor-binding domain or the N-terminal domain (NTD). Over a dozen potently neutralizing NTD-directed antibodies have been studied structurally, and all target a single antigenic supersite in NTD (site 1). Here we report the 3.7 Å resolution cryo-EM structure of a potent NTD-directed neutralizing antibody 5-7, which recognizes a site distinct from other potently neutralizing antibodies, inserting a binding loop into an exposed hydrophobic pocket between the two sheets of the NTD ß-sandwich. Interestingly, this pocket has been previously identified as the binding site for hydrophobic molecules including heme metabolites, but we observe their presence to not substantially impede 5-7 recognition. Mirroring its distinctive binding, antibody 5-7 retains a distinctive neutralization potency with variants of concern (VOC). Overall, we reveal a hydrophobic pocket in NTD proposed for immune evasion can actually be used by the immune system for recognition. HIGHLIGHTS: Cryo-EM structure of neutralizing antibody 5-7 in complex with SARS CoV-2 spike5-7 recognizes NTD outside of the previously identified antigenic supersite5-7 binds to a site known to accommodate numerous hydrophobic ligandsStructural basis of 5-7 neutralization tolerance to some variants of concern.

11.
Structure ; 29(7): 655-663.e4, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34111408

RESUMO

Emerging SARS-CoV-2 strains, B.1.1.7 and B.1.351, from the UK and South Africa, respectively, show decreased neutralization by monoclonal antibodies and convalescent or vaccinee sera raised against the original wild-type virus, and are thus of clinical concern. However, the neutralization potency of two antibodies, 1-57 and 2-7, which target the receptor-binding domain (RBD) of the spike, was unaffected by these emerging strains. Here, we report cryo-EM structures of 1-57 and 2-7 in complex with spike, revealing each of these antibodies to utilize a distinct mechanism to bypass or accommodate RBD mutations. Notably, each antibody represented an immune response with recognition distinct from those of frequent antibody classes. Moreover, many epitope residues recognized by 1-57 and 2-7 were outside hotspots of evolutionary pressure for ACE2 binding and neutralizing antibody escape. We suggest the therapeutic use of antibodies, such as 1-57 and 2-7, which target less prevalent epitopes, could ameliorate issues of monoclonal antibody escape.


Assuntos
Enzima de Conversão de Angiotensina 2/química , Anticorpos Monoclonais/química , Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Receptores Virais/química , SARS-CoV-2/química , Glicoproteína da Espícula de Coronavírus/química , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/genética , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/metabolismo , Sítios de Ligação , Clonagem Molecular , Microscopia Crioeletrônica , Epitopos/química , Epitopos/genética , Epitopos/imunologia , Epitopos/metabolismo , Expressão Gênica , Células HEK293 , Humanos , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Receptores Virais/genética , Receptores Virais/imunologia , Receptores Virais/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo
12.
Cell Rep ; 35(1): 108950, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33794145

RESUMO

Antibodies with heavy chains that derive from the VH1-2 gene constitute some of the most potent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing antibodies yet identified. To provide insight into whether these genetic similarities inform common modes of recognition, we determine the structures of the SARS-CoV-2 spike in complex with three VH1-2-derived antibodies: 2-15, 2-43, and H4. All three use VH1-2-encoded motifs to recognize the receptor-binding domain (RBD), with heavy-chain N53I-enhancing binding and light-chain tyrosines recognizing F486RBD. Despite these similarities, class members bind both RBD-up and -down conformations of the spike, with a subset of antibodies using elongated CDRH3s to recognize glycan N343 on a neighboring RBD-a quaternary interaction accommodated by an increase in RBD separation of up to 12 Å. The VH1-2 antibody class, thus, uses modular recognition encoded by modular genetic elements to effect potent neutralization, with the VH-gene component specifying recognition of RBD and the CDRH3 component specifying quaternary interactions.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Região Variável de Imunoglobulina , SARS-CoV-2/imunologia , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/genética , Anticorpos Antivirais/imunologia , COVID-19/genética , COVID-19/imunologia , Células HEK293 , Humanos , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/imunologia
13.
Cell Host Microbe ; 29(5): 819-833.e7, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33789084

RESUMO

Numerous antibodies that neutralize SARS-CoV-2 have been identified, and these generally target either the receptor-binding domain (RBD) or the N-terminal domain (NTD) of the viral spike. While RBD-directed antibodies have been extensively studied, far less is known about NTD-directed antibodies. Here, we report cryo-EM and crystal structures for seven potent NTD-directed neutralizing antibodies in complex with spike or isolated NTD. These structures defined several antibody classes, with at least one observed in multiple convalescent donors. The structures revealed that all seven antibodies target a common surface, bordered by glycans N17, N74, N122, and N149. This site-formed primarily by a mobile ß-hairpin and several flexible loops-was highly electropositive, located at the periphery of the spike, and the largest glycan-free surface of NTD facing away from the viral membrane. Thus, in contrast to neutralizing RBD-directed antibodies that recognize multiple non-overlapping epitopes, potent NTD-directed neutralizing antibodies appear to target a single supersite.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Humanos , Mutação , Conformação Proteica , Domínios Proteicos , Glicoproteína da Espícula de Coronavírus/química
14.
bioRxiv ; 2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33655245

RESUMO

Emerging SARS-CoV-2 strains, B.1.1.7 and B.1.351, from the UK and South Africa, respectively show decreased neutralization by monoclonal antibodies and convalescent or vaccinee sera raised against the original wild-type virus, and are thus of clinical concern. However, the neutralization potency of two antibodies, 1-57 and 2-7, which target the receptor-binding domain (RBD) of spike, was unaffected by these emerging strains. Here, we report cryo-EM structures of 1-57 and 2-7 in complex with spike, revealing each of these antibodies to utilize a distinct mechanism to bypass or accommodate RBD mutations. Notably, each antibody represented a response with recognition distinct from those of frequent antibody classes. Moreover, many epitope residues recognized by 1-57 and 2-7 were outside hotspots of evolutionary pressure for both ACE2 binding and neutralizing antibody escape. We suggest the therapeutic use of antibodies like 1-57 and 2-7, which target less prevalent epitopes, could ameliorate issues of monoclonal antibody escape.

15.
Elife ; 92020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33231171

RESUMO

In the mouse, the osteoblast-derived hormone Lipocalin-2 (LCN2) suppresses food intake and acts as a satiety signal. We show here that meal challenges increase serum LCN2 levels in persons with normal or overweight, but not in individuals with obesity. Postprandial LCN2 serum levels correlate inversely with hunger sensation in challenged subjects. We further show through brain PET scans of monkeys injected with radiolabeled recombinant human LCN2 (rh-LCN2) and autoradiography in baboon, macaque, and human brain sections, that LCN2 crosses the blood-brain barrier and localizes to the hypothalamus in primates. In addition, daily treatment of lean monkeys with rh-LCN2 decreases food intake by 21%, without overt side effects. These studies demonstrate the biology of LCN2 as a satiety factor and indicator and anorexigenic signal in primates. Failure to stimulate postprandial LCN2 in individuals with obesity may contribute to metabolic dysregulation, suggesting that LCN2 may be a novel target for obesity treatment.


Obesity has reached epidemic proportions worldwide and affects more than 40% of adults in the United States. People with obesity have a greater likelihood of developing type 2 diabetes, cardiovascular disease or chronic kidney disease. Changes in diet and exercise can be difficult to follow and result in minimal weight loss that is rarely sustained overtime. In fact, in people with obesity, weight loss can lower the metabolism leading to increased weight gain. New drugs may help some individuals achieve 5 to 10% weight loss but have side effects that prevent long-term use. Previous studies in mice show that a hormone called Lipocalin-2 (LCN2) suppresses appetite. It also reduces body weight and improves sugar metabolism in the animals. But whether this hormone has the same effects in humans or other primates is unclear. If it does, LCN2 might be a potential obesity treatment. Now, Petropoulou et al. show that LCN2 suppressed appetite in humans and monkeys. In human studies, LCN2 levels increased after a meal in individuals with normal weight or overweight, but not in individuals with obesity. Higher levels of LCN2 in a person's blood were also associated with a feeling of reduced hunger. Using brain scans, Petropoulou et al. showed that LCN2 crossed the blood-brain barrier in monkeys and bound to the hypothalamus, the brain center regulating appetite and energy balance. LCN2 also bound to human and monkey hypothalamus tissue in laboratory experiments. When injected into monkeys, the hormone suppressed food intake and lowered body weight without toxic effects in short-term studies. The experiments lay the initial groundwork for testing whether LCN2 might be a useful treatment for obesity. More studies in animals will help scientists understand how LCN2 works, which patients might benefit, how it would be given to patients and for how long. Clinical trials would also be needed to verify whether it is an effective and safe treatment for obesity.


Assuntos
Lipocalina-2/metabolismo , Macaca/metabolismo , Obesidade/metabolismo , Papio/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Ingestão de Alimentos , Humanos , Lipocalina-2/genética , Obesidade/diagnóstico por imagem , Obesidade/genética , Obesidade/fisiopatologia , Tomografia por Emissão de Pósitrons , Transporte Proteico
16.
Nature ; 569(7755): 280-283, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30971825

RESUMO

Neurite self-recognition and avoidance are fundamental properties of all nervous systems1. These processes facilitate dendritic arborization2,3, prevent formation of autapses4 and allow free interaction among non-self neurons1,2,4,5. Avoidance among self neurites is mediated by stochastic cell-surface expression of combinations of about 60 isoforms of α-, ß- and γ-clustered protocadherin that provide mammalian neurons with single-cell identities1,2,4-13. Avoidance is observed between neurons that express identical protocadherin repertoires2,5, and single-isoform differences are sufficient to prevent self-recognition10. Protocadherins form isoform-promiscuous cis dimers and isoform-specific homophilic trans dimers10,14-20. Although these interactions have previously been characterized in isolation15,17-20, structures of full-length protocadherin ectodomains have not been determined, and how these two interfaces engage in self-recognition between neuronal surfaces remains unknown. Here we determine the molecular arrangement of full-length clustered protocadherin ectodomains in single-isoform self-recognition complexes, using X-ray crystallography and cryo-electron tomography. We determine the crystal structure of the clustered protocadherin γB4 ectodomain, which reveals a zipper-like lattice that is formed by alternating cis and trans interactions. Using cryo-electron tomography, we show that clustered protocadherin γB6 ectodomains tethered to liposomes spontaneously assemble into linear arrays at membrane contact sites, in a configuration that is consistent with the assembly observed in the crystal structure. These linear assemblies pack against each other as parallel arrays to form larger two-dimensional structures between membranes. Our results suggest that the formation of ordered linear assemblies by clustered protocadherins represents the initial self-recognition step in neuronal avoidance, and thus provide support for the isoform-mismatch chain-termination model of protocadherin-mediated self-recognition, which depends on these linear chains11.


Assuntos
Caderinas/metabolismo , Caderinas/ultraestrutura , Microscopia Crioeletrônica , Neurônios/química , Neurônios/metabolismo , Animais , Caderinas/química , Caderinas/genética , Cristalografia por Raios X , Lipossomos/química , Lipossomos/metabolismo , Camundongos , Modelos Moleculares , Neurônios/ultraestrutura , Domínios Proteicos , Multimerização Proteica , Protocaderinas
17.
Proc Natl Acad Sci U S A ; 114(46): E9829-E9837, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29087338

RESUMO

Clustered protocadherins (Pcdhs) mediate numerous neural patterning functions, including neuronal self-recognition and non-self-discrimination to direct self-avoidance among vertebrate neurons. Individual neurons stochastically express a subset of Pcdh isoforms, which assemble to form a stochastic repertoire of cis-dimers. We describe the structure of a PcdhγB7 cis-homodimer, which includes the membrane-proximal extracellular cadherin domains EC5 and EC6. The structure is asymmetric with one molecule contributing interface surface from both EC5 and EC6, and the other only from EC6. Structural and sequence analyses suggest that all Pcdh isoforms will dimerize through this interface. Site-directed mutants at this interface interfere with both Pcdh cis-dimerization and cell surface transport. The structure explains the known restrictions of cis-interactions of some Pcdh isoforms, including α-Pcdhs, which cannot form homodimers. The asymmetry of the interface approximately doubles the size of the recognition repertoire, and restrictions on cis-interactions among Pcdh isoforms define the limits of the Pcdh recognition unit repertoire.


Assuntos
Caderinas/química , Caderinas/metabolismo , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Sequência de Aminoácidos , Animais , Caderinas/genética , Cristalografia por Raios X , Células HEK293 , Humanos , Camundongos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Neurônios/metabolismo , Isoformas de Proteínas/genética , Multimerização Proteica , Alinhamento de Sequência , Análise de Sequência de Proteína
18.
Elife ; 52016 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-27782885

RESUMO

Stochastic cell-surface expression of α-, ß-, and γ-clustered protocadherins (Pcdhs) provides vertebrate neurons with single-cell identities that underlie neuronal self-recognition. Here we report crystal structures of ectodomain fragments comprising cell-cell recognition regions of mouse γ-Pcdhs γA1, γA8, γB2, and γB7 revealing trans-homodimers, and of C-terminal ectodomain fragments from γ-Pcdhs γA4 and γB2, which depict cis-interacting regions in monomeric form. Together these structures span the entire γ-Pcdh ectodomain. The trans-dimer structures reveal determinants of γ-Pcdh isoform-specific homophilic recognition. We identified and structurally mapped cis-dimerization mutations to the C-terminal ectodomain structures. Biophysical studies showed that Pcdh ectodomains from γB-subfamily isoforms formed cis dimers, whereas γA isoforms did not, but both γA and γB isoforms could interact in cis with α-Pcdhs. Together, these data show how interaction specificity is distributed over all domains of the γ-Pcdh trans interface, and suggest that subfamily- or isoform-specific cis-interactions may play a role in the Pcdh-mediated neuronal self-recognition code.


Assuntos
Caderinas/química , Caderinas/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Animais , Proteínas Relacionadas a Caderinas , Cristalografia por Raios X , Camundongos , Modelos Moleculares , Conformação Proteica , Multimerização Proteica
19.
Neuron ; 90(4): 709-23, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27161523

RESUMO

Clustered protocadherin proteins (α-, ß-, and γ-Pcdhs) provide a high level of cell-surface diversity to individual vertebrate neurons, engaging in highly specific homophilic interactions to mediate important roles in mammalian neural circuit development. How Pcdhs bind homophilically through their extracellular cadherin (EC) domains among dozens of highly similar isoforms has not been determined. Here, we report crystal structures for extracellular regions from four mouse Pcdh isoforms (α4, α7, ß6, and ß8), revealing a canonical head-to-tail interaction mode for homophilic trans dimers comprising primary intermolecular EC1:EC4 and EC2:EC3 interactions. A subset of trans interface residues exhibit isoform-specific conservation, suggesting roles in recognition specificity. Mutation of these residues, along with trans-interacting partner residues, altered the specificities of Pcdh interactions. Together, these data show how sequence variation among Pcdh isoforms encodes their diverse strict homophilic recognition specificities, which are required for their key roles in neural circuit assembly.


Assuntos
Sequência de Aminoácidos/fisiologia , Caderinas/química , Caderinas/metabolismo , Neurônios/metabolismo , Células Cultivadas , Humanos , Rede Nervosa/metabolismo , Ligação Proteica/fisiologia , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/metabolismo
20.
Cell ; 163(3): 629-42, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26478182

RESUMO

Self-avoidance, a process preventing interactions of axons and dendrites from the same neuron during development, is mediated in vertebrates through the stochastic single-neuron expression of clustered protocadherin protein isoforms. Extracellular cadherin (EC) domains mediate isoform-specific homophilic binding between cells, conferring cell recognition through a poorly understood mechanism. Here, we report crystal structures for the EC1-EC3 domain regions from four protocadherin isoforms representing the α, ß, and γ subfamilies. All are rod shaped and monomeric in solution. Biophysical measurements, cell aggregation assays, and computational docking reveal that trans binding between cells depends on the EC1-EC4 domains, which interact in an antiparallel orientation. We also show that the EC6 domains are required for the formation of cis-dimers. Overall, our results are consistent with a model in which protocadherin cis-dimers engage in a head-to-tail interaction between EC1-EC4 domains from apposed cell surfaces, possibly forming a zipper-like protein assembly, and thus providing a size-dependent self-recognition mechanism.


Assuntos
Caderinas/química , Caderinas/metabolismo , Neurônios/citologia , Neurônios/fisiologia , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Fenômenos Fisiológicos do Sistema Nervoso , Estrutura Terciária de Proteína , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA