Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Cancer ; 23(1): 34, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624401

RESUMO

BACKGROUND: All cell types express long non-coding RNAs (lncRNAs), which have the potential to play a role in carcinogenesis by altering the levels of their expression. Squamous cell carcinoma of the esophagus (ESCC) is a deadly disease with a poor prognosis and a high frequency of lymphatic metastases. Understanding the functional role and signaling pathways of two neighboring lncRNAs, CCAT1 and PVT1, in this oncogene's pathogenesis may help us determine ESCC. Furthermore, it is still unclear whether these lncRNAs are linked to the clinicopathological characteristics of patients with ESCC. METHODS: For this study, we used biopsy from the Imam Khomeini Cancer Institute's tumor bank in Tehran, Iran to obtain 40 ESCC tumor samples and their normal margin counterparts. The expression levels of the CCAT1, PVT1, and c-MYC genes were assessed using quantitative Real-Time RT-PCR. Additionally, demographic data and clinical-pathologic characteristics, such as tumor grade, tumor stage, lymph node, and metastasis, were taken into consideration. Graphpad prism version 8 was used for bioinformatics analyses. RESULTS: Comparing ESCC tissues to non-tumor tissues, we found significant upregulation of PVT1, CCAT1, and c-MYC. Patients with ESCC who had increased PVT1 expression also had higher rates of advanced stage and lymph node metastasis, whereas increased CCAT1 expression was only linked to advanced stage and wasn't associated with lymph node metastasis. In predicting ESCC, CCAT1 (p < 0.05) was found to be an important factor. Overall survival was reduced by c-MYC and PVT1 overexpression (p < 0.001), according to Kaplan-Meier analysis. PVT1, CCAT1, and c-MYC were found to interact with 23 miRNAs with high and medium score classes, as shown in a bioinformatics study. We summarized the experimentally proven interactions between c-MYC, PVT1, and CCAT1 and other miRNAs, lncRNAs, and proteins. CONCLUSION: This is the first report that CCAT1, PVT1 and c-MYC have been found to be up-regulated simultaneously in ESCC. It is possible that these genes may be involved in ESCC as a result of these findings. Therefore, as consequence, more research is needed to determine whether or not these lncRNAs play an oncogenic role in ESCC development and progression, as well as the regulatory mechanisms that control them.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , Proteínas Proto-Oncogênicas c-myc , RNA Longo não Codificante , Humanos , Biomarcadores Tumorais/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Regulação Neoplásica da Expressão Gênica , Genes myc , Irã (Geográfico) , Metástase Linfática , Oncogenes , Prognóstico , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Regulação para Cima
2.
Mol Biol Rep ; 49(2): 895-905, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35040008

RESUMO

PURPOSE: Cancer-associated fibroblasts (CAFs) are major components of tumor microenvironment that stimulate ESCC and GC progression. The LncRNA-CAF, FLJ22447, is located in the vicinity of HIF1A, while their association remains unclear. This study aims to assess the FLJ22447 expression in the ESCC and GC patients and evaluate its association with the HIF1A gene. METHODS: Fresh ESCC and GC tumor samples and their adjacent non-tumor tissues were collected from patients who underwent surgery in Imam Khomeini Hospital, Tehran, Iran. The expression of FLJ22447, HIF1A, and VEGF was evaluated using qRT-PCR test. The association of their expression with tumor clinicopathological features in ESCC patients was assessed. System biology tools were then applied for the possible biological subsequences of the FLJ22447. RESULTS: A significant reduction in FLJ22447 expression was observed in ESCC and GC tissues than adjacent non-tumor tissues, while, the expression of HIF1A and VEGF were increased. Low expression of FLJ22447 was significantly correlated with HIF1A (P = 2.4e-73, R = 0.63) and VEGF (P = 0.00019, R = 0.15) expression. A significant relationship was detected between the high expression of HIF1A and tumor stages (I-II) and it was related to the reduced survival of ESCC patients. Conversely, increased VEGF expression was linked to the advanced stages (III-IV) and metastasis in ESCC. The analysis of FLJ22447-interacted proteins showed that MYC, JUN, SMRCA4, PPARG, AR, FOS, and CEBPA are the hub genes. These proteins were implicated in the cancer related pathways. Among them, SPI1, E2F1, TCF7L2, and STAT1 were significantly expressed in esophageal and gastric cancers that were functionally involved in the proliferation, apoptosis, and angiogenesis pathways in cancer. CONCLUSION: The results suggested that FLJ22447 may have a regulatory function on the HIF1A expression. We identified the FLJ22447-interacted proteins and their molecular function in cancer pathogenesis. Further research emphasis is to realize the association of FLJ22447 with its protein partners in progression of cancer. These may provide an insight into the FLJ22447 activity that could introduce it as a potential value in tumor gene therapy.


Assuntos
Carcinoma de Células Escamosas do Esôfago/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , RNA Longo não Codificante/genética , Neoplasias Gástricas/genética , Apoptose/genética , Biomarcadores Tumorais/genética , Fibroblastos Associados a Câncer/metabolismo , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Gástricas/metabolismo , Microambiente Tumoral/genética
3.
J BUON ; 25(4): 1805-1813, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33099917

RESUMO

PURPOSE: Long non-coding RNAs (LncRNAs) are thought as tumorigenic factors in cancer progression. We investigated the clinical significance of arylsulfatase D (ARSD) and ARSD antisense in breast cancer patients. METHODS: Eighty breast cancer tumors were obtained from the Tumor Bank of Cancer Institute, Imam Khomeini Hospital. The expression level of ARSD and ARSD-AS1 were examined in breast tumors in comparison to the margin of normal tissues using quantitative real-time PCR. Demographic information and the clinicopathologic characteristics including tumor grade, presence of cell receptors, lymph node and vascular invasion were also evaluated. Bioinformatics databases were used for identification of ARSD and ARSD-AS1 molecular targets and their association with cancer. RESULTS: Significant up-regulation of ARSD was observed in tumor tissues in comparison with its antisense (p<0.05). Both ARSD and ARSD-AS1 expression in tumor specimens were notably lower than those in adjacent normal tissue. High expression of ARSD was associated to lower tumor grade (p<0.05). Bioinformatics results revealed the interaction of ARSD with STS and SUMF1 proteins was attributed to the inhibiting of sulfates activity. Also, ARSD co-expressed genes were associated with oncogenic transcription factors, MAF and GATA. TP53 transcription factor site was identified as a target of ARSD-AS1 mRNA. The interaction of this antisense with microRNA (miR-618) could explain its participation in tumor cell proliferation. CONCLUSION: Low expression of ARSD was associated with higher tumor grade. The evidence from this study enhance our understanding of ARSD and ARSD-AS1 function in cancer gene therapy. Accordingly, they could be introduced as great potential targets for breast cancer treatment.


Assuntos
Arilsulfatases/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , RNA Antissenso/genética , RNA Longo não Codificante/genética , Arilsulfatases/biossíntese , Arilsulfatases/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Pessoa de Meia-Idade , Oncogenes , RNA Antissenso/biossíntese , RNA Antissenso/metabolismo , RNA Longo não Codificante/biossíntese , RNA Longo não Codificante/metabolismo , Transcrição Gênica
4.
J Biomol Struct Dyn ; 38(7): 1954-1962, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31179892

RESUMO

Gastric cancer (GC) is the second leading cause of cancer-related deaths in the world. Due to the shortage of adequate symptoms in the early stages, it is diagnosed when the tumor has spread to distant organs. Early recognition of GC enhances the chance of successful treatment. Molecular mechanisms of GC are still poorly understood. LncRNAs are emerging as new players in cancer in both oncogene and tumor suppressor roles. High-throughput technologies such as RNA-Seq, have revealed thousands of lncRNAs which are dysregulated in GC. In this study, we retrieved lncRNAs obtained by High-throughput technologies from OncoLnc database. Consequently, retrieved lncRNAs were compared in literature-based databases including PubMed. As a result, two lists, including experimentally validated lncRNAs and predicted lncRNAs were provided. We found 43 predicted lncRNAs that had not been experimentally validated in GC, so far. Further Bioinformatics analyses were performed to obtain the expression profile of predicted lncRNAs in tumor and normal tissues. Also, the roles and targets of predicted lncRNAs in GC were identified by related databases. Finally, using the GEPIA database was reviewed the significant relationship of predicted lncRNAs with the survival of GC patients. By recognizing the lncRNAs involved in initiation and progression of GC, they may be considered as potential biomarkers in the GC early diagnosis or targeted treatment and lead to novel therapeutic strategies. Communicated by Ramaswamy H. Sarma.


Assuntos
RNA Longo não Codificante , Neoplasias Gástricas , Biomarcadores Tumorais/genética , Biologia Computacional , Simulação por Computador , Regulação Neoplásica da Expressão Gênica , Humanos , RNA Longo não Codificante/genética , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética
5.
J Cell Physiol ; 234(10): 16925-16932, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30854678

RESUMO

Cardiovascular disease (CVD) is the leading cause of mortality globally. There are few useful markers available for CVD risk stratification that has proven clinical utility. Scavenger receptor B type I (SR-BI) is a cell surface protein that plays a major role in cholesterol homeostasis through its interaction with high-density lipoprotein-cholesterol (HDL-C) esters (CE). HDL delivers CE to the liver through selective uptake by the SR-BI. SR-BI also regulates the inflammatory response. It has been shown that SR-BI overexpression has beneficial, protective effects in atherogenesis, and there is considerable interest in developing antiatherogenic strategies that involve SR-BI-mediated increases in reverse cholesterol transport through HDL and/or low-density lipoprotein. Further investigations are essential to explore the clinical utility of this approach. Moreover, there is growing evidence showing associations between genetic variants with modulation of SR-BI function that may, thereby, increase CVD risk. The aim of the current review was to provide an overview of the possible molecular mechanisms by which SR-BI may affect CVD risk, and the clinical implications of this, with particular emphasis on preclinical studies on genetic changes of SR-BI and CVD risk.


Assuntos
Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/terapia , Receptores Depuradores Classe B/metabolismo , Biomarcadores , Doenças Cardiovasculares/sangue , Humanos , Fatores de Risco , Receptores Depuradores Classe B/sangue
6.
Iran J Basic Med Sci ; 22(11): 1283-1287, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32128092

RESUMO

OBJECTIVES: Breast cancer is the second leading cause of cancer death in females. Understanding molecular mechanisms in cancer cells compared with normal cells is crucial for diagnostic and therapeutic strategies. Long intergenic non-protein coding RNA, a regulator of reprogramming (lincRNA-RoR) is a noncoding RNA which initially was detected in induced pluripotent stem cells, and it has an important role in cell reprogramming and highly expressed in breast cancer cells. A key point in successful gene silencing is the usage of siRNA delivery system that is safe and efficient. MATERIALS AND METHODS: In this study, the fifth-generation of PAMAM dendrimer is used as a nanocarrier for entering siRNA molecules for gene silencing of lincRNA-RoR. WDR7 is the gene encoding adjacent of lincRNA-RoR, which has an important role in apoptosis and cell cycle. Gel retardation assay was used to find the best Negative/Positive (N/P) molar charge ratio of siRNA- PAMAM transfected into MDA-MB 231 cells. MTT assay was performed 24 hr after transfection revealed the IC50 value (half maximal inhibitory concentrations) about 100 nanomolar for lincRNA-ROR siRNA. RESULTS: The lincRNA-RoR and WDR7 gene expression changes were evaluated by real-time PCR after siRNA treatment and showed an increase in the gene expression of WDR7. CONCLUSION: This study showed that PAMAM dendrimer G5/ siRNA could be a useful system delivery for future gene therapy approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA