Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Mol Plant ; 14(8): 1343-1361, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34015460

RESUMO

Cereal endosperm comprises an outer aleurone and an inner starchy endosperm. Although these two tissues have the same developmental origin, they differ in morphology, cell fate, and storage product accumulation, with the mechanism largely unknown. Here, we report the identification and characterization of rice thick aleurone 1 (ta1) mutant that shows an increased number of aleurone cell layers and increased contents of nutritional factors including proteins, lipids, vitamins, dietary fibers, and micronutrients. We identified that the TA1 gene, which is expressed in embryo, aleurone, and subaleurone in caryopses, encodes a mitochondrion-targeted protein with single-stranded DNA-binding activity named OsmtSSB1. Cytological analyses revealed that the increased aleurone cell layers in ta1 originate from a developmental switch of subaleurone toward aleurone instead of starchy endosperm in the wild type. We found that TA1/OsmtSSB1 interacts with mitochondrial DNA recombinase RECA3 and DNA helicase TWINKLE, and downregulation of RECA3 or TWINKLE also leads to ta1-like phenotypes. We further showed that mutation in TA1/OsmtSSB1 causes elevated illegitimate recombinations in the mitochondrial genome, altered mitochondrial morphology, and compromised energy supply, suggesting that the OsmtSSB1-mediated mitochondrial function plays a critical role in subaleurone cell-fate determination in rice.


Assuntos
Proteínas de Ligação a DNA/genética , Mitocôndrias/metabolismo , Mutação/genética , Oryza/genética , Proteínas de Plantas/genética , Endosperma/genética , Regulação da Expressão Gênica de Plantas/genética , Fenótipo , Sementes/genética , Amido/genética
3.
J Integr Plant Biol ; 62(10): 1625-1637, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32198820

RESUMO

Hormones are important signaling molecules regulating developmental processes and responses to environmental stimuli in higher plants. Rice endosperm, the portion of the seed surrounding the embryo, is the main determinant of rice grain shape and yield; however, the dynamics and exact functions of phytohormones in developing endosperm remain elusive. Through a systemic study including transcriptome analysis, hormone measurement, and transgene-based endosperm-specific expression of phytohormone biosynthetic enzymes, we demonstrated that dynamic phytohormone levels play crucial roles in the developing rice endosperm, particularly in regard to grain shape and quality. We detected diverse, differential, and dramatically changing expression patterns of genes related to hormone biosynthesis and signaling during endosperm development, especially at early developmental stages. Liquid chromatography measurements confirmed the dynamic accumulation of hormones in developing endosperm. Further transgenic analysis performed on plants expressing hormone biosynthesis genes driven by an endosperm-specific promoter revealed differential effects of the hormones, especially auxin and brassinosteroids, in regulating grain shape and quality. Our studies help elucidate the distinct roles of hormones in developing endosperm and provide novel and useful tools for influencing crop seed shape and yield.


Assuntos
Endosperma/metabolismo , Oryza/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Brassinosteroides/metabolismo , Cromatografia Líquida , Ácidos Indolacéticos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA