Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 61(46): e202206930, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36125387

RESUMO

Central π-core engineering of non-fullerene small molecule acceptors (NF-SMAs) is effective in boosting the performance of organic solar cells (OSCs). Especially, selenium (Se) functionalization of NF-SMAs is considered a promising strategy but the structure-performance relationship remains unclear. Here, we synthesize two isomeric alkylphenyl-substituted selenopheno[3,2-b]thiophene-based NF-SMAs named mPh4F-TS and mPh4F-ST with different substitution positions, and contrast them with the thieno[3,2-b]thiophene-based analogue, mPh4F-TT. When placing Se atoms at the outer positions of the π-core, mPh4F-TS shows the most red-shifted absorption and compact molecular stacking. The PM6 : mPh4F-TS devices exhibit excellent absorption, high charge carrier mobility, and reduced energy loss. Consequently, PM6 : mPh4F-TS achieves more balanced photovoltaic parameters and yields an efficiency of 18.05 %, which highlights that precisely manipulating selenium functionalization is a practicable way toward high-efficiency OSCs.

2.
Adv Mater ; 32(52): e2003500, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33185952

RESUMO

Developing high-performance donor polymers is important for nonfullerene organic solar cells (NF-OSCs), as state-of-the-art nonfullerene acceptors can only perform well if they are coupled with a matching donor with suitable energy levels. However, there are very limited choices of donor polymers for NF-OSCs, and the most commonly used ones are polymers named PM6 and PM7, which suffer from several problems. First, the performance of these polymers (particularly PM7) relies on precise control of their molecular weights. Also, their optimal morphology is extremely sensitive to any structural modification. In this work, a family of donor polymers is developed based on a random polymerization strategy. These polymers can achieve well-controlled morphology and high-performance with a variety of chemical structures and molecular weights. The polymer donors are D-A1-D-A2-type random copolymers in which the D and A1 units are monomers originating from PM6 or PM7, while the A2 unit comprises an electron-deficient core flanked by two thiophene rings with branched alkyl chains. Consequently, multiple cases of highly efficient NF-OSCs are achieved with efficiencies between 16.0% and 17.1%. As the electron-deficient cores can be changed to many other structural units, the strategy can easily expand the choices of high-performance donor polymers for NF-OSCs.

3.
Adv Mater ; 31(48): e1904735, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31608506

RESUMO

Although organic-inorganic hybrid perovskite solar cells (PVSCs) have achieved dramatic improvement in device efficiency, their long-term stability remains a major concern prior to commercialization. To address this issue, extensive research efforts are dedicated to exploiting all-inorganic PVSCs by using cesium (Cs)-based perovskite materials, such as α-CsPbI3 . However, the black-phase CsPbI3 (cubic α-CsPbI3 and orthorhombic γ-CsPbI3 phases) is not stable at room temperature, and it tends to convert to the nonperovskite δ-CsPbI3 phase. Here, a simple yet effective approach is described to prepare stable black-phase CsPbI3 by forming a heterostructure comprising 0D Cs4 PbI6 and γ-CsPbI3 through tuning the stoichiometry of the precursors between CsI and PbI. Such heterostructure is manifested to enable the realization of a stable all-inorganic PVSC with a high power conversion efficiency of 16.39%. This work provides a new perspective for developing high-performance and stable all-inorganic PVSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA