RESUMO
OBJECTIVE: The objective of the study was to systematically investigate the association between gut microbiota (GM) abundance and Parkinson's disease (PD). METHODS: PubMed, Medline, Cochrane Library and other literature datebase platforms were searched for eligible studies in the English-language from conception to March 1, 2024. Studies evaluating the association between GM and PD were included. The results of the included studies were analyzed using a random effects model with calculation of the mean difference (MD) with the 95 % confidence interval to quantify the incidence of differences in abundance of various bacterial families in PD patients. Continuous models were used to analyze the extracted data. RESULTS: A total of 14 studies with 1045 PD cases and 821 healthy controls were included for data extraction and meta-analysis. All the included studies exhibited reasonable quality. The included studies reported the data on the ratios of 10 families of GM. Of these 10 microbiota families, Bifidobacteriaceae, Ruminococcaceae, Rikenellaceae, Lactobacillaceae, Verrucomicrobiaceae and Christensenellaceae were found to have increased ratios according to the pooled ratios, while Prevotellaceae, Lachnospiraceae, Erysipelotrichaceae and Faecalibacterium were decreased in PD cases. CONCLUSION: Patients in the PD cohort exhibited distinctive microbiota compositions compared to healthy individuals, with unique differential patterns in gut microbiome abundance at the phylum, family, and genus levels that may be associated wtih PD pathogenesis.
Assuntos
Microbioma Gastrointestinal , Doença de Parkinson , Doença de Parkinson/microbiologia , Humanos , Bactérias/classificação , Bactérias/isolamento & purificaçãoRESUMO
Using a nonconvex nonsmooth optimization approach, we introduce a model for semisupervised clustering (SSC) with pairwise constraints. In this model, the objective function is represented as a sum of three terms: the first term reflects the clustering error for unlabeled data points, the second term expresses the error for data points with must-link (ML) constraints, and the third term represents the error for data points with cannot-link (CL) constraints. This function is nonconvex and nonsmooth. To find its optimal solutions, we introduce an adaptive SSC (A-SSC) algorithm. This algorithm is based on the combination of the nonsmooth optimization method and an incremental approach, which involves the auxiliary SSC problem. The algorithm constructs clusters incrementally starting from one cluster and gradually adding one cluster center at each iteration. The solutions to the auxiliary SSC problem are utilized as starting points for solving the nonconvex SSC problem. The discrete gradient method (DGM) of nonsmooth optimization is applied to solve the underlying nonsmooth optimization problems. This method does not require subgradient evaluations and uses only function values. The performance of the A-SSC algorithm is evaluated and compared with four benchmarking SSC algorithms on one synthetic and 12 real-world datasets. Results demonstrate that the proposed algorithm outperforms the other four algorithms in identifying compact and well-separated clusters while satisfying most constraints.
RESUMO
BACKGROUND: We aimed to review relevant randomized controlled trials to assess the relative clinical effects of antibiotic treatment of patients with community-acquired pneumonia (CAP). METHODS: In this meta-analysis, we identified relevant studies from PubMed, Cochrane, and Embase using appropriate keywords. Key pertinent sources in the literature were also reviewed and all articles published through Oct 2019 were considered for inclusion. For each study, we assessed the risk ratios (RRs) or mean difference combined with the 95% confidence interval (CI) to assess and synthesize outcomes. RESULTS: Overall, 36 studies were consistent with the meta-analysis, involving 17,076 patients. There was no significant difference in the mortality after subgroup analysis: individualized treatment vs. standard treatment; ß-lactams plus macrolides vs. ß-lactam and/or fluoroquinolone; ceftaroline fosamil vs. ceftriaxone; combination therapy vs. monotherapy or high-dose vs. low-dose. The drug-related adverse event incidence was significantly higher in the ceftriaxone group than in the other drug groups (P<0.05) and also higher in the tigecyline group than in the levofloxacin group (P<0.05). Compared with ceftriaxone, ceftaroline fosamil significantly increased the clinical cure rate at the test-of-cure (TOC) visit in the clinically evaluable population, modified intent-to-treat efficacy (MITTE) population, microbiologically evaluable (ME) population and the microbiological MITTE (mMITTE) population (all P<0.05). Compared with ceftriaxone, ceftaroline fosamil significantly increased the clinical cure rate at the TOC visit in the mMITTE population of Gram positive-Streptococcus pneumoniae (P<0.05) and multidrug-resistant S. pneumoniae (P<0.05). CONCLUSION: There was a limited number of included studies in the subgroup analysis, but it will still be necessary to conduct more high-quality randomized controlled trials to confirm the clinical efficacy of different antibiotics used to treat CAP.
RESUMO
AIMS: Previous studies have suggested that Helicobacter pylori (H. pylori) infections may be the cause of or worsen Parkinson's disease symptoms. In this meta-analysis, all relevant studies were reviewed to assess whether H. pylori treatment would benefit patients with Parkinson's disease. MAIN METHODS: Systemically searches were carried out in MEDLINE and other popular databases. The software RevMan 5.2 was used for meta-analysis. The mean difference (MD) was used as the effect size to draw forest plots. KEY FINDINGS: A total of 10 qualified studies were included. For bradykinesia, the pooled MD value of stride length was -75.76, 95% CI [-109.37, -42.15, P < 0.05]; for myotonia, the pooled MD value of torque to flex was 75.24, 95% CI [27.36, 123.13, P < 0.05]. The pooled MD value of Unified Parkinson's Disease Rating Scale (UPDRS)-III scores before and after treatment was 6.27, 95% CI [1.30, 11.24, P < 0.05], suggesting that UPDRS-III scores improved in response to H. pylori treatment. The pooled MD value of levodopa onset time (min) was 14.91, 95% CI [8.92, 20.90, P < 0.05]. SIGNIFICANCE: H. pylori treatment may improve the stride length in the bradykinesia index and significantly improve UPDRS-III scores.
Assuntos
Antibacterianos/uso terapêutico , Infecções por Helicobacter/tratamento farmacológico , Helicobacter pylori/isolamento & purificação , Doença de Parkinson/complicações , Progressão da Doença , Infecções por Helicobacter/complicações , Infecções por Helicobacter/microbiologia , Humanos , Doença de Parkinson/patologiaRESUMO
Morphological tuning or additional cation doping is one of the potential and simple methods to enhance the photocatalytic properties of ceria, in which rare-earth element doped ceria nanorods (CeO2-RE NRs) are expected to be a promising photocatalyst with high activity. But the optimal doping conditions, including the variety and concentration of RE elements are ambiguous, and the contribution of doped RE ions to the enhancement of photocatalytic activity needs to be further studied. In this work, we doped La, Y and Sm with a wide range of 0%-30% into CeO2 NRs, and investigated the phase, morphology, band gap, oxygen vacancy concentration, PL spectra and photocatalytic activity variation under different doping conditions. All synthesized CeO2-RE NRs possessed a good nanorod morphology except the 15 and 30% Y-doped samples. The energy band gaps of the synthesized samples changed slightly; the 10% CeO2-RE NRs with the narrowest band gaps possessed the higher photocatalytic performance. The most outstanding photocatalyst was found to be the 10% Y-doped CeO2 NRs with a methylene blue photodegradation ratio of 85.59% and rate constant of 0.0134 min-1, which is particularly associated with a significant higher oxygen vacancy concentration and obviously lower recombination rate of photogenerated e-/h+ pairs. The doped RE ions and the promotion of oxygen vacancy generation impede the recombination of photogenerated carriers, which is proposed as the main reason to enhance the photocatalytic property of CeO2.
RESUMO
Spinal cord injury not only disrupts axonal tracts but also causes gliotic, fibrotic, and Schwannotic scarring with resulting deposition of chondroitin sulfate proteoglycans (CSPGs) which prevent axonal reconnection and recovery of locomotor function. Here, we determined whether recovery of locomotor function could be promoted after complete transection, by degrading CSPGs enzymatically within the injury site with chondroitinase ABC (chABC) together with treatment with the beta(2)-adrenoceptor agonist, clenbuterol, a neuroprotective agent which can promote regrowth of lower motoneurons. Partial recovery of locomotor function was observed 8-12 weeks postinjury only after combined chABC and clenbuterol treatment. The recovery of locomotor function coincided with the presence of axons caudal to the injury site arising from neurons of the reticular, vestibular, and red nuclei also only with combined chABC and clenbuterol treatment. Axons myelinated by Schwann cells were most prominent in the transection site in the combined treatment group. Clenbuterol treatment activated cAMP response element binding protein within retrogradely traced neurons which has been associated with axonal regrowth. ChABC treatment decreased scarring due to both CSPG and collagen deposition as well as the gap between intact regions of the spinal cord. ChABC also increased numbers of phagocytic cells which remove myelin debris as well as populations of astrocytes thereby aiding blood-spinal cord barrier reformation. Together the results suggest that chABC and clenbuterol can act synergistically to promote recovery of locomotor function.