Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nat Commun ; 15(1): 3924, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724518

RESUMO

An effective HIV-1 vaccine must elicit broadly neutralizing antibodies (bnAbs) against highly diverse Envelope glycoproteins (Env). Since Env with the longest hypervariable (HV) loops is more resistant to the cognate bnAbs than Env with shorter HV loops, we redesigned hypervariable loops for updated Env consensus sequences of subtypes B and C and CRF01_AE. Using modeling with AlphaFold2, we reduced the length of V1, V2, and V5 HV loops while maintaining the integrity of the Env structure and glycan shield, and modified the V4 HV loop. Spacers are designed to limit strain-specific targeting. All updated Env are infectious as pseudoviruses. Preliminary structural characterization suggests that the modified HV loops have a limited impact on Env's conformation. Binding assays show improved binding to modified subtype B and CRF01_AE Env but not to subtype C Env. Neutralization assays show increases in sensitivity to bnAbs, although not always consistently across clades. Strikingly, the HV loop modification renders the resistant CRF01_AE Env sensitive to 10-1074 despite the absence of a glycan at N332.


Assuntos
Anticorpos Neutralizantes , Anticorpos Anti-HIV , HIV-1 , Produtos do Gene env do Vírus da Imunodeficiência Humana , HIV-1/imunologia , Humanos , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Anticorpos Anti-HIV/imunologia , Anticorpos Neutralizantes/imunologia , Vacinas contra a AIDS/imunologia , Testes de Neutralização , Células HEK293 , Sequência Consenso , Infecções por HIV/virologia , Infecções por HIV/imunologia , Ligação Proteica , Epitopos/imunologia
2.
Nat Commun ; 15(1): 2175, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467646

RESUMO

In the ENSEMBLE randomized, placebo-controlled phase 3 trial (NCT04505722), estimated single-dose Ad26.COV2.S vaccine efficacy (VE) was 56% against moderate to severe-critical COVID-19. SARS-CoV-2 Spike sequences were determined from 484 vaccine and 1,067 placebo recipients who acquired COVID-19. In this set of prespecified analyses, we show that in Latin America, VE was significantly lower against Lambda vs. Reference and against Lambda vs. non-Lambda [family-wise error rate (FWER) p < 0.05]. VE differed by residue match vs. mismatch to the vaccine-insert at 16 amino acid positions (4 FWER p < 0.05; 12 q-value ≤ 0.20); significantly decreased with physicochemical-weighted Hamming distance to the vaccine-strain sequence for Spike, receptor-binding domain, N-terminal domain, and S1 (FWER p < 0.001); differed (FWER ≤ 0.05) by distance to the vaccine strain measured by 9 antibody-epitope escape scores and 4 NTD neutralization-impacting features; and decreased (p = 0.011) with neutralization resistance level to vaccinee sera. VE against severe-critical COVID-19 was stable across most sequence features but lower against the most distant viruses.


Assuntos
Ad26COVS1 , COVID-19 , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Eficácia de Vacinas , Aminoácidos , Anticorpos Antivirais , Anticorpos Neutralizantes
3.
mBio ; 15(3): e0174923, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38329340

RESUMO

Knowledge of HIV-1 global sequence diversity is critical for developing an effective prophylactic against HIV-1 infection. We developed the Hervé platform to analyze and visualize trends in HIV-1 diversification. Using Hervé, we analyzed 4,830 Env, 4,407 Gag, and 3,002 Pol publicly available independent sequences corresponding to subtypes A1, A6, B, C, D, F1, and G and circulating recombinant forms (CRFs) 01_AE, 02_AG, and 07_BC; sequences were sampled between 1980 and 2020 from 82 countries. HIV-1 diversified with a median of 1.82 amino acid substitutions per year in Env, 0.297 in Gag, and 0.779 in Pol. Yet, Env subtype B diversification plateaued post-2000. Pairwise diversity within subtypes and CRFs increased by 41.82% (range = 24.85%-54.41%) in Env, 56.93% (15.38%-89.16%) in Gag, and 46.12% (11.70%-70.57%) in Pol. Consensus sequences based on sequences sampled in each decade remained relatively stable over time. Similarly, at antibody epitope sites, only 0-8 residues that were minority variants became consensus over time in any subtype/CRF and only one known drug resistance mutation site differed from the reference (subtype G). The apparent contradiction between the fast diversification of HIV-1 and its limited adaptation illustrates that HIV-1 evolution is not directional and its consensus is at the intersection of millions of within-host selective processes occurring in a star-like manner. While a consensus sequence is a better representation of HIV-1 diversity than any individual sequence, consensus sequences have progressively become more distant from the circulating sequences they represent. IMPORTANCE: Global surveillance of HIV-1 sequences is critical for designing relevant prophylactic and therapeutic interventions to infection. We designed an open-source platform, Hervé, for analyzing and visualizing the diversification dynamics of HIV-1 protein sequences. We characterized the evolution of over 12,000 HIV-1 Env, Gag, and Pol protein sequences from 1980-2020 and found that, despite a steady increase in intra-subtype and circulating recombinant form diversity, the most frequent residue at each site, i.e., the consensus, has varied only moderately.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Humanos , HIV-1/genética , Filogenia , Recombinação Genética , Sequência de Aminoácidos , Infecções por HIV/epidemiologia
4.
Proc Natl Acad Sci U S A ; 121(4): e2308942121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38241441

RESUMO

In the Antibody Mediated Prevention (AMP) trials (HVTN 704/HPTN 085 and HVTN 703/HPTN 081), prevention efficacy (PE) of the monoclonal broadly neutralizing antibody (bnAb) VRC01 (vs. placebo) against HIV-1 acquisition diagnosis varied according to the HIV-1 Envelope (Env) neutralization sensitivity to VRC01, as measured by 80% inhibitory concentration (IC80). Here, we performed a genotypic sieve analysis, a complementary approach to gaining insight into correlates of protection that assesses how PE varies with HIV-1 sequence features. We analyzed HIV-1 Env amino acid (AA) sequences from the earliest available HIV-1 RNA-positive plasma samples from AMP participants diagnosed with HIV-1 and identified Env sequence features that associated with PE. The strongest Env AA sequence correlate in both trials was VRC01 epitope distance that quantifies the divergence of the VRC01 epitope in an acquired HIV-1 isolate from the VRC01 epitope of reference HIV-1 strains that were most sensitive to VRC01-mediated neutralization. In HVTN 704/HPTN 085, the Env sequence-based predicted probability that VRC01 IC80 against the acquired isolate exceeded 1 µg/mL also significantly associated with PE. In HVTN 703/HPTN 081, a physicochemical-weighted Hamming distance across 50 VRC01 binding-associated Env AA positions of the acquired isolate from the most VRC01-sensitive HIV-1 strain significantly associated with PE. These results suggest that incorporating mutation scoring by BLOSUM62 and weighting by the strength of interactions at AA positions in the epitope:VRC01 interface can optimize performance of an Env sequence-based biomarker of VRC01 prevention efficacy. Future work could determine whether these results extend to other bnAbs and bnAb combinations.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Humanos , Anticorpos Amplamente Neutralizantes , Anticorpos Neutralizantes , Anticorpos Anti-HIV , Epitopos/genética
5.
Nat Commun ; 15(1): 200, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172512

RESUMO

The repeat emergence of SARS-CoV-2 variants of concern (VoC) with decreased susceptibility to vaccine-elicited antibodies highlights the need to develop next-generation vaccine candidates that confer broad protection. Here we describe the antibody response induced by the SARS-CoV-2 Spike Ferritin Nanoparticle (SpFN) vaccine candidate adjuvanted with the Army Liposomal Formulation including QS21 (ALFQ) in non-human primates. By isolating and characterizing several monoclonal antibodies directed against the Spike Receptor Binding Domain (RBD), N-Terminal Domain (NTD), or the S2 Domain, we define the molecular recognition of vaccine-elicited cross-reactive monoclonal antibodies (mAbs) elicited by SpFN. We identify six neutralizing antibodies with broad sarbecovirus cross-reactivity that recapitulate serum polyclonal antibody responses. In particular, RBD mAb WRAIR-5001 binds to the conserved cryptic region with high affinity to sarbecovirus clades 1 and 2, including Omicron variants, while mAb WRAIR-5021 offers complete protection from B.1.617.2 (Delta) in a murine challenge study. Our data further highlight the ability of SpFN vaccination to stimulate cross-reactive B cells targeting conserved regions of the Spike with activity against SARS CoV-1 and SARS-CoV-2 variants.


Assuntos
Nanopartículas , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Animais , Camundongos , Anticorpos Neutralizantes , Macaca mulatta , Vacinação , Anticorpos Antivirais , Anticorpos Monoclonais , Vacinas contra COVID-19 , Ferritinas , Glicoproteína da Espícula de Coronavírus/genética
6.
Structure ; 32(2): 131-147.e7, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38157856

RESUMO

Given the continuous emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VoCs), immunotherapeutics that target conserved epitopes on the spike (S) glycoprotein have therapeutic advantages. Here, we report the crystal structure of the SARS-CoV-2 S receptor-binding domain (RBD) at 1.95 Å and describe flexibility and distinct conformations of the angiotensin-converting enzyme 2 (ACE2)-binding site. We identify a set of SARS-CoV-2-reactive monoclonal antibodies (mAbs) with broad RBD cross-reactivity including SARS-CoV-2 Omicron subvariants, SARS-CoV-1, and other sarbecoviruses and determine the crystal structures of mAb-RBD complexes with Ab246 and CR3022 mAbs targeting the class IV site, WRAIR-2134, which binds the recently designated class V epitope, and WRAIR-2123, the class I ACE2-binding site. The broad reactivity of class IV and V mAbs to conserved regions of SARS-CoV-2 VoCs and other sarbecovirus provides a framework for long-term immunotherapeutic development strategies.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Sítios de Ligação , Epitopos
7.
Cell Rep ; 42(8): 112942, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37561630

RESUMO

Zika virus (ZIKV) is an emerging pathogen that causes devastating congenital defects. The overlapping epidemiology and immunologic cross-reactivity between ZIKV and dengue virus (DENV) pose complex challenges to vaccine design, given the potential for antibody-dependent enhancement of disease. Therefore, classification of ZIKV-specific antibody targets is of notable value. From a ZIKV-infected rhesus macaque, we identify ZIKV-reactive B cells and isolate potent neutralizing monoclonal antibodies (mAbs) with no cross-reactivity to DENV. We group these mAbs into four distinct antigenic groups targeting ZIKV-specific cross-protomer epitopes on the envelope glycoprotein. Co-crystal structures of representative mAbs in complex with ZIKV envelope glycoprotein reveal envelope-dimer epitope and unique dimer-dimer epitope targeting. All four specificities are serologically identified in convalescent humans following ZIKV infection, and representative mAbs from all four groups protect against ZIKV replication in mice. These results provide key insights into ZIKV-specific antigenicity and have implications for ZIKV vaccine, diagnostic, and therapeutic development.


Assuntos
Vírus da Dengue , Dengue , Vacinas Virais , Infecção por Zika virus , Zika virus , Humanos , Animais , Camundongos , Anticorpos Neutralizantes , Epitopos , Macaca mulatta , Anticorpos Antivirais , Anticorpos Monoclonais , Vacinas Virais/uso terapêutico , Proteínas do Envelope Viral/química
8.
Res Sq ; 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37398105

RESUMO

It is of interest to pinpoint SARS-CoV-2 sequence features defining vaccine resistance. In the ENSEMBLE randomized, placebo-controlled phase 3 trial, estimated single-dose Ad26.COV2.S vaccine efficacy (VE) was 56% against moderate to severe-critical COVID-19. SARS-CoV-2 Spike sequences were measured from 484 vaccine and 1,067 placebo recipients who acquired COVID-19 during the trial. In Latin America, where Spike diversity was greatest, VE was significantly lower against Lambda than against Reference and against all non-Lambda variants [family-wise error rate (FWER) p < 0.05]. VE also differed by residue match vs. mismatch to the vaccine-strain residue at 16 amino acid positions (4 FWER p < 0.05; 12 q-value ≤ 0.20). VE significantly decreased with physicochemical-weighted Hamming distance to the vaccine-strain sequence for Spike, receptor-binding domain, N-terminal domain, and S1 (FWER p < 0.001); differed (FWER ≤ 0.05) by distance to the vaccine strain measured by 9 different antibody-epitope escape scores and by 4 NTD neutralization-impacting features; and decreased (p = 0.011) with neutralization resistance level to vaccine recipient sera. VE against severe-critical COVID-19 was stable across most sequence features but lower against viruses with greatest distances. These results help map antigenic specificity of in vivo vaccine protection.

9.
J Virol ; 97(7): e0159622, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37395646

RESUMO

Novel therapeutic monoclonal antibodies (MAbs) must accommodate comprehensive breadth of activity against diverse sarbecoviruses and high neutralization potency to overcome emerging variants. Here, we report the crystal structure of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor binding domain (RBD) in complex with MAb WRAIR-2063, a moderate-potency neutralizing antibody with exceptional sarbecovirus breadth, that targets the highly conserved cryptic class V epitope. This epitope overlaps substantially with the spike protein N-terminal domain (NTD) -interacting region and is exposed only when the spike is in the open conformation, with one or more RBDs accessible. WRAIR-2063 binds the RBD of SARS-CoV-2 WA-1, all variants of concern (VoCs), and clade 1 to 4 sarbecoviruses with high affinity, demonstrating the conservation of this epitope and potential resiliency against variation. We compare structural features of additional class V antibodies with their reported neutralization capacity to further explore the utility of the class V epitope as a pan-sarbecovirus vaccine and therapeutic target. IMPORTANCE Characterization of MAbs against SARS-CoV-2, elicited through vaccination or natural infection, has provided vital immunotherapeutic options for curbing the COVID-19 pandemic and has supplied critical insights into SARS-CoV-2 escape, transmissibility, and mechanisms of viral inactivation. Neutralizing MAbs that target the RBD but do not block ACE2 binding are of particular interest because the epitopes are well conserved within sarbecoviruses and MAbs targeting this area demonstrate cross-reactivity. The class V RBD-targeted MAbs localize to an invariant site of vulnerability, provide a range of neutralization potency, and exhibit considerable breadth against divergent sarbecoviruses, with implications for vaccine and therapeutic development.


Assuntos
Anticorpos Antivirais , COVID-19 , Epitopos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Humanos , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/química , Anticorpos Antivirais/metabolismo , Epitopos/química , SARS-CoV-2/química , SARS-CoV-2/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/química , Domínios Proteicos , Cristalografia por Raios X , Estrutura Quaternária de Proteína , Modelos Moleculares , Linhagem Celular
10.
Nat Commun ; 14(1): 580, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737435

RESUMO

Despite rapid and ongoing vaccine and therapeutic development, SARS-CoV-2 continues to evolve and evade, presenting a need for next-generation diverse therapeutic modalities. Here we show that nurse sharks immunized with SARS-CoV-2 recombinant receptor binding domain (RBD), RBD-ferritin (RFN), or spike protein ferritin nanoparticle (SpFN) immunogens elicit a set of new antigen receptor antibody (IgNAR) molecules that target two non-overlapping conserved epitopes on the spike RBD. Representative shark antibody variable NAR-Fc chimeras (ShAbs) targeting either of the two epitopes mediate cell-effector functions, with high affinity to all SARS-CoV-2 viral variants of concern, including the divergent Omicron strains. The ShAbs potently cross-neutralize SARS-CoV-2 WA-1, Alpha, Beta, Delta, Omicron BA.1 and BA.5, and SARS-CoV-1 pseudoviruses, and confer protection against SARS-CoV-2 challenge in the K18-hACE2 transgenic mouse model. Structural definition of the RBD-ShAb01-ShAb02 complex enabled design and production of multi-specific nanobodies with enhanced neutralization capacity, and picomolar affinity to divergent sarbecovirus clade 1a, 1b and 2 RBD molecules. These shark nanobodies represent potent immunotherapeutics both for current use, and future sarbecovirus pandemic preparation.


Assuntos
COVID-19 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Anticorpos de Domínio Único , Animais , Camundongos , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Epitopos , Ferritinas/genética , Fragmentos Fc das Imunoglobulinas , Camundongos Transgênicos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Tubarões
11.
Sci Adv ; 9(3): eabq4149, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36652518

RESUMO

Coronaviruses are a diverse family of viruses that crossed over into humans at least seven times, precipitating mild to catastrophic outcomes. The severe acute respiratory syndrome coronavirus 2 pandemic renewed efforts to identify strains with zoonotic potential and to develop pan-coronavirus vaccines. The analysis of 2181 coronavirus genomes (from 102 host species) confirmed the limited sequence conservation across genera (alpha-, beta-, delta-, and gammacoronavirus) and proteins. A phylogenetically informed pan-coronavirus vaccine was not feasible because of high genetic heterogeneity across genera. We focused on betacoronaviruses and identified nonhuman-infecting receptor binding domain (RBD) sequences that were more genetically similar to human coronaviruses than expected given their phylogenetic divergence. These human-like RBDs defined three phylogenetic clusters. A vaccine candidate based on a representative sequence for each cluster covers the diversity estimated to protect against existing and future human-infecting betacoronaviruses. Our findings emphasize the potential value of conceptualizing prophylaxis against zoonoses in terms of genetic, rather than species, diversity.

12.
PLoS Comput Biol ; 18(10): e1010624, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36315492

RESUMO

The immense global diversity of HIV-1 is a significant obstacle to developing a safe and effective vaccine. We recently showed that infections established with multiple founder variants are associated with the development of neutralization breadth years later. We propose a novel vaccine design strategy that integrates the variability observed in acute HIV-1 infections with multiple founder variants. We developed a probabilistic model to simulate this variability, yielding a set of sequences that present the minimal diversity seen in an infection with multiple founders. We applied this model to a subtype C consensus sequence for the Envelope (Env) (used as input) and showed that the simulated Env sequences mimic the mutational landscape of an infection with multiple founder variants, including diversity at antibody epitopes. The derived set of multi-founder-variant-like, minimally distant antigens is designed to be used as a vaccine cocktail specific to a HIV-1 subtype or circulating recombinant form and is expected to promote the development of broadly neutralizing antibodies.


Assuntos
Vacinas contra a AIDS , Infecções por HIV , HIV-1 , Humanos , HIV-1/genética , Anticorpos Anti-HIV , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Anticorpos Neutralizantes , Vacinas contra a AIDS/genética , Infecções por HIV/prevenção & controle
13.
EBioMedicine ; 84: 104253, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36088683

RESUMO

BACKGROUND: Harnessing CD8+ T cell responses is being explored to achieve HIV remission. Although HIV-specific CD8+ T cells become dysfunctional without treatment, antiretroviral therapy (ART) partially restores their function. However, the extent of this recovery under long-term ART is less understood. METHODS: We analyzed the differentiation status and function of HIV-specific CD8+ T cells after long-term ART initiated in acute or chronic HIV infection ex vivo and upon in vitro recall. FINDINGS: ART initiation in any stage of acute HIV infection promoted the persistence of long-lived HIV-specific CD8+ T cells with high expansion (P<0·0008) and cytotoxic capacity (P=0·02) after in vitro recall, albeit at low cell number (P=0·003). This superior expansion capacity correlated with stemness (r=0·90, P=0·006), measured by TCF-1 expression, similar to functional HIV-specific CD8+ T cells found in spontaneous controllers. Importanly, TCF-1 expression in these cells was associated with longer time to viral rebound ranging from 13 to 48 days after ART interruption (r =0·71, P=0·03). In contrast, ART initiation in chronic HIV infection led to more differentiated HIV-specific CD8+ T cells lacking stemness properties and exhibiting residual dysfunction upon recall, with reduced proliferation and cytolytic activity. INTERPRETATION: ART initiation in acute HIV infection preserves functional HIV-specific CD8+ T cells, albeit at numbers too low to control viral rebound post-ART. HIV remission strategies may need to boost HIV-specific CD8+ T cell numbers and induce stem cell-like properties to reverse the residual dysfunction persisting on ART in people treated after acute infection prior to ART release. FUNDING: U.S. National Institutes of Health and U.S. Department of Defense.


Assuntos
Infecções por HIV , HIV-1 , Linfócitos T CD8-Positivos/metabolismo , Progressão da Doença , Infecções por HIV/tratamento farmacológico , Infecções por HIV/metabolismo , HIV-1/fisiologia , Humanos , Carga Viral
14.
PLoS Pathog ; 18(3): e1010369, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35303045

RESUMO

Eliciting broadly neutralizing antibodies (bnAbs) is a cornerstone of HIV-1 vaccine strategies. Comparing HIV-1 envelope (env) sequences from the first weeks of infection to the breadth of antibody responses observed several years after infection can help define viral features critical to vaccine design. We investigated the relationship between HIV-1 env genetics and the development of neutralization breadth in 70 individuals enrolled in a prospective acute HIV-1 cohort. Half of the individuals who developed bnAbs were infected with multiple HIV-1 founder variants, whereas all individuals with limited neutralization breadth had been infected with single HIV-1 founders. Accordingly, at HIV-1 diagnosis, env diversity was significantly higher in participants who later developed bnAbs compared to those with limited breadth (p = 0.012). This association between founder multiplicity and the subsequent development of neutralization breadth was also observed in 56 placebo recipients in the RV144 vaccine efficacy trial. In addition, we found no evidence that neutralization breath was heritable when analyzing env sequences from the 126 participants. These results demonstrate that the presence of slightly different HIV-1 variants in acute infection could promote the induction of bnAbs, suggesting a novel vaccine strategy, whereby an initial immunization with a cocktail of minimally distant antigens would be able to initiate bnAb development towards breadth.


Assuntos
HIV-1 , Anticorpos Neutralizantes , Epitopos , Anticorpos Anti-HIV , HIV-1/genética , Humanos , Estudos Prospectivos , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
15.
Virus Evol ; 7(2): veab057, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34532060

RESUMO

The scale of the HIV-1 epidemic underscores the need for a vaccine. The multitude of circulating HIV-1 strains together with HIV-1's high evolvability hints that HIV-1 could adapt to a future vaccine. Here, we wanted to investigate the effect of vaccination on the evolution of the virus post-breakthrough infection. We analyzed 2,635 HIV-1 env sequences sampled up to a year post-diagnosis from 110 vaccine and placebo participants who became infected in the RV144 vaccine efficacy trial. We showed that the Env signature sites that were previously identified to distinguish vaccine and placebo participants were maintained over time. In addition, fewer sites were under diversifying selection in the vaccine group than in the placebo group. These results indicate that HIV-1 would possibly adapt to a vaccine upon its roll-out.

16.
J Virol ; 95(17): e0079721, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34160251

RESUMO

Identifying whether viral features present in acute HIV-1 infection predetermine the development of neutralization breadth is critical to vaccine design. Incorporating such features in vaccine antigens could initiate cross-reactive antibody responses that could sufficiently protect vaccinees from HIV-1 infection despite the uniqueness of each founder virus. To understand the relationship between Env determinants and the development of neutralization breadth, we focused on 197 individuals enrolled in two cohorts in Thailand and East Africa (RV144 and RV217) and followed since their diagnosis in acute or early HIV-1 infection. We analyzed the distribution of variable loop lengths and glycans, as well as the predicted density of the glycan shield, and compared these envelope features to the neutralization breadth data obtained 3 years after infection (n = 121). Our study revealed limited evidence for glycan shield features that associate with the development of neutralization breadth. While the glycan shield tended to be denser in participants who subsequently developed breadth, no significant relationship was found between the size of glycan holes and the development of neutralization breadth. The parallel analysis of 3,000 independent Env sequences showed no evidence of directional evolution of glycan shield features since the beginning of the epidemic. Together, our results highlight that glycan shield features in acute and early HIV-1 infection may not play a role determinant enough to dictate the development of neutralization breadth and instead suggest that the glycan shield's reactive properties that are associated with immune evasion may have a greater impact. IMPORTANCE A major goal of HIV-1 vaccine research is to design vaccine candidates that elicit potent broadly neutralizing antibodies (bNAbs). Different viral features have been associated with the development of bNAbs, including the glycan shield on the surface of the HIV-1 Envelope (Env). Here, we analyzed data from two cohorts of individuals who were followed from early infection to several years after infection spanning multiple HIV-1 subtypes. We compared Env glycan features in HIV-1 sequences obtained in early infection to the potency and breadth of neutralizing antibodies measured 1 to 3 years after infection. We found limited evidence of glycan shield properties that associate with the development of neutralization breadth in these cohorts. These results may have important implications for antigen design in future vaccine strategies and emphasize that HIV-1 vaccines will need to rely on a complex set of properties to elicit neutralization breadth.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/epidemiologia , HIV-1/imunologia , Evasão da Resposta Imune/imunologia , Polissacarídeos/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , África Oriental/epidemiologia , Anticorpos Neutralizantes/sangue , Estudos de Coortes , Epitopos , Glicosilação , Anticorpos Anti-HIV/sangue , Infecções por HIV/imunologia , Infecções por HIV/virologia , Humanos , Tailândia/epidemiologia
17.
J Immunol Methods ; 487: 112874, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33022219

RESUMO

Genus Flavivirus, which includes 53 virus species, is the leading cause of arthropod-borne diseases in humans. Diagnosis of these viral diseases is complicated by their overlapping epidemiology and clinical manifestations, and the fact that cross-reactive antibody responses are frequently elicited by individuals in response to infection. We developed a bead-based immunoassay to concomitantly profile the isotype and subclass of antibody responses (five isotypes and four subclasses) in parallel with specificity against multiple antigens. Our panel included 22 envelope (E) and non-structural 1 (NS1) proteins of different flaviviruses (Zika (ZIKV), Dengue (DENV), Yellow Fever (YFV), West Nile (WNV), Japanese Encephalitis (JEV) and Tick-Borne Encephalitis (TBEV)) and the envelope protein of Chikungunya virus (CHIKV). Using 54 samples from 40 individuals with ZIKV infection that had been pre-characterized, we identified 1) stronger ZIKV responses in individuals previously exposed to flavivirus compared to flavivirus-naïve individuals; 2) different antibody isotypes depending on the stage of infection: acute, convalescent and late convalescent; 3) cross-reactive responses; and 4) a potential CHIKV infection. The assay had a broad dynamic range (>5 logs) and has the potential to distinguish antigen-specific responses induced by ZIKV infection from cross-reactive responses. The multidimensional data provided by this high-throughput antibody-profiling platform can advance our understanding of the human immune response to flaviviruses as they expand their global reach.


Assuntos
Anticorpos Antivirais/sangue , Infecções por Flavivirus/diagnóstico , Flavivirus/imunologia , Ensaios de Triagem em Larga Escala , Imunoglobulinas/sangue , Testes Sorológicos , Anticorpos Antivirais/imunologia , Especificidade de Anticorpos , Biomarcadores/sangue , Reações Cruzadas , Diagnóstico Diferencial , Infecções por Flavivirus/sangue , Infecções por Flavivirus/imunologia , Infecções por Flavivirus/virologia , Imunoglobulinas/imunologia , Valor Preditivo dos Testes , Reprodutibilidade dos Testes
18.
Proc Natl Acad Sci U S A ; 117(38): 23652-23662, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32868447

RESUMO

The magnitude of the COVID-19 pandemic underscores the urgency for a safe and effective vaccine. Many vaccine candidates focus on the Spike protein, as it is targeted by neutralizing antibodies and plays a key role in viral entry. Here we investigate the diversity seen in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequences and compare it to the sequence on which most vaccine candidates are based. Using 18,514 sequences, we perform phylogenetic, population genetics, and structural bioinformatics analyses. We find limited diversity across SARS-CoV-2 genomes: Only 11 sites show polymorphisms in >5% of sequences; yet two mutations, including the D614G mutation in Spike, have already become consensus. Because SARS-CoV-2 is being transmitted more rapidly than it evolves, the viral population is becoming more homogeneous, with a median of seven nucleotide substitutions between genomes. There is evidence of purifying selection but little evidence of diversifying selection, with substitution rates comparable across structural versus nonstructural genes. Finally, the Wuhan-Hu-1 reference sequence for the Spike protein, which is the basis for different vaccine candidates, matches optimized vaccine inserts, being identical to an ancestral sequence and one mutation away from the consensus. While the rapid spread of the D614G mutation warrants further study, our results indicate that drift and bottleneck events can explain the minimal diversity found among SARS-CoV-2 sequences. These findings suggest that a single vaccine candidate should be efficacious against currently circulating lineages.


Assuntos
Betacoronavirus/genética , Genoma Viral , Vacinas Virais/genética , Betacoronavirus/imunologia , COVID-19 , Vacinas contra COVID-19 , Infecções por Coronavirus/genética , Infecções por Coronavirus/prevenção & controle , Variação Genética , Humanos , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Mutação Puntual , SARS-CoV-2 , Seleção Genética
19.
bioRxiv ; 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32511298

RESUMO

SARS-CoV-2 is a zoonotic virus that has caused a pandemic of severe respiratory disease-COVID-19-within several months of its initial identification. Comparable to the first SARS-CoV, this novel coronavirus's surface Spike (S) glycoprotein mediates cell entry via the human ACE-2 receptor, and, thus, is the principal target for the development of vaccines and immunotherapeutics. Molecular information on the SARS-CoV-2 S glycoprotein remains limited. Here we report the crystal structure of the SARS-CoV-2 S receptor-binding-domain (RBD) at a the highest resolution to date, of 1.95 Å. We identified a set of SARS-reactive monoclonal antibodies with cross-reactivity to SARS-CoV-2 RBD and other betacoronavirus S glycoproteins. One of these antibodies, CR3022, was previously shown to synergize with antibodies that target the ACE-2 binding site on the SARS-CoV RBD and reduce viral escape capacity. We determined the structure of CR3022, in complex with the SARS-CoV-2 RBD, and defined a broadly reactive epitope that is highly conserved across betacoronaviruses. This epitope is inaccessible in the "closed" prefusion S structure, but is accessible in "open" conformations. This first-ever resolution of a human antibody in complex with SARS-CoV-2 and the broad reactivity of this set of antibodies to a conserved betacoronavirus epitope will allow antigenic assessment of vaccine candidates, and provide a framework for accelerated vaccine, immunotherapeutic and diagnostic strategies against SARS-CoV-2 and related betacoronaviruses.

20.
J Clin Invest ; 130(6): 3299-3304, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32182219

RESUMO

Infusion of the broadly neutralizing antibody VRC01 has been evaluated in individuals chronically infected with HIV-1. Here, we studied how VRC01 infusions affected viral rebound after cessation of antiretroviral therapy (ART) in 18 acutely treated and durably suppressed individuals. Viral rebound occurred in all individuals, yet VRC01 infusions modestly delayed rebound and participants who showed a faster decay of VRC01 in serum rebounded more rapidly. Participants with strains most sensitive to VRC01 or with VRC01 epitope motifs similar to known VRC01-susceptible strains rebounded later. Upon rebound, HIV-1 sequences were indistinguishable from those sampled at diagnosis. Across the cohort, participant-derived Env showed different sensitivity to VRC01 neutralization (including 2 resistant viruses), yet neutralization sensitivity was similar at diagnosis and after rebound, indicating the lack of selection for VRC01 resistance during treatment interruption. Our results showed that viremia rebounded despite the absence of HIV-1 adaptation to VRC01 and an average VRC01 trough of 221 µg/mL. Although VRC01 levels were insufficient to prevent a resurgent infection, knowledge that they did not mediate Env mutations in acute-like viruses is relevant for antibody-based strategies in acute infection.


Assuntos
Anticorpos Neutralizantes/imunologia , Epitopos/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Mutação , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/genética , Doença Crônica , Epitopos/genética , Feminino , Anticorpos Anti-HIV/administração & dosagem , Anticorpos Anti-HIV/genética , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , HIV-1/genética , Humanos , Masculino , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA