Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 11(10)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36290624

RESUMO

Superoxide dismutase (SOD) actively participates in the wound stress of plants. However, whether StMSD mediates the generation of H2O2 and the deposition of suberin polyphenolic and lignin at potato tuber wounds is elusive. In this study, we developed the StMSD interference expression of potato plants and tubers by Agrobacterium tumefaciens-mediated transformation. The StSOD expression showed a marked downregulation in StMSD-interference tubers, especially StCSD2 and StCSD3. The content of O2•- exhibited a noticeable increase together with the inhibition in H2O2 accumulation. Moreover, the gene expression levels of StPAL (phenylalanine ammonia-lyase) and StC4H (cinnamate-4-hydroxylase) were downregulated in StMSD-interference tubers, and less suberin polyphenolic and lignin depositions at the wounds were observed. Taken together, the interference expression of StMSD can result in less suberin polyphenolic and lignin deposition by inhibiting the disproportionation of O2•- to H2O2 and restraining phenylpropanoid metabolism in tubers.

2.
Ying Yong Sheng Tai Xue Bao ; 27(1): 315-26, 2016 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-27228624

RESUMO

Status and transport of water in plant body are the main contents of study of soil-plant-atmosphere continuum (SPAC), as well as the base for use and regulation of agricultural water. The process of water transport in plant can be deeply influenced by the environments. Thus, plant needs to adjust its water status to accommodate the environmental change to sustain its own growth and development. Traditional methods for plant water monitoring, such as evaporation flux, pressure chamber, high pressure flow meter, heat pulse, and so on, usually cause damage or even destruction of plant body and disturb the original water status. Thus, they are not able to truly and precisely detect and reflect the real water status of plant. Nuclear magnetic resonance (NMR) is a non-destructive and non-invasive technique which can be used for the measurement of water molecular displacement, and transportation. This study aimed to provide an overview of the applications of NMR technique in the study of water distribution and transport in plant roots and stems, as well as the water content in plant cells and tissues. In addition, the existing main problems and possible solutions were analyzed for the applications of NMR in SPAC studies. Several important issues were proposed for the acquisition of more precise and reliable detection signals. It was suggested that the NMR technique would probably make important progress in the relevant fields such as plant water physiology, plantenvironment interactions, and water metabolism. In general, the application of NMR in SPAC system study was still in its infancy in China. The deeper application and expansion of NMR in SPAC study would depend on the development of portable and open NMR equipment that could be easily applied for different plants in field.


Assuntos
Atmosfera , Ecossistema , Espectroscopia de Ressonância Magnética , Plantas , Solo , Água , Transporte Biológico , China , Fenômenos Fisiológicos Vegetais , Raízes de Plantas
3.
Front Plant Sci ; 5: 525, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25339966

RESUMO

Soil salinity is an increasingly serious problem worldwide that reduces agricultural output potential. Selected beneficial soil bacteria can promote plant growth and augment tolerance to biotic and abiotic stresses. Bacillus subtilis strain GB03 has been shown to confer growth promotion and abiotic stress tolerance in the model plant Arabidopsis thaliana. Here we examined the effect of this beneficial soil bacterium on salt tolerance in the legume forage crop, white clover. Plants of white clover (Trifolium repens L. cultivar Huia) were grown from seeds with or without soil inoculation of the beneficial soil bacterium Bacillus subtilis GB03 supplemented with 0, 50, 100, or 150 mM NaCl water into soil. Growth parameters, chlorophyll content, malondialdehyde (MDA) content and osmotic potential were monitored during the growth cycle. Endogenous Na(+) and K(+) contents were determined at the time of harvest. White clover plants grown in GB03-inoculated soil were significantly larger than non-inoculated controls with respect to shoot height, root length, plant biomass, leaf area and chlorophyll content; leaf MDA content under saline condition and leaf osmotic potential under severe salinity condition (150 mM NaCl) were significantly decreased. Furthermore, GB03 significantly decreased shoot and root Na(+) accumulation and thereby improved K(+)/Na(+) ratio when GB03-inoculated plants were grown under elevated salt conditions. The results indicate that soil inoculation with GB03 promotes white clover growth under both non-saline and saline conditions by directly or indirectly regulating plant chlorophyll content, leaf osmotic potential, cell membrane integrity and ion accumulation.

4.
Front Plant Sci ; 5: 787, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25628634

RESUMO

Salinity is one of the major abiotic stresses that impacts plant growth and reduces the productivity of field crops. Compared to field plants, test tube plantlets offer a direct and fast approach to investigate the mechanism of salt tolerance. Here we examined the ultrastructural and physiological responses of potato (Solanum tuberosum L. c.v. "Longshu No. 3") plantlets to gradient saline stress (0, 25, 50, 100, and 200 mM NaCl) with two consequent observations (2 and 6 weeks, respectively). The results showed that, with the increase of external NaCl concentration and the duration of treatments, (1) the number of chloroplasts and cell intercellular spaces markedly decreased, (2) cell walls were thickened and even ruptured, (3) mesophyll cells and chloroplasts were gradually damaged to a complete disorganization containing more starch, (4) leaf Na and Cl contents increased while leaf K content decreased, (5) leaf proline content and the activities of catalase (CAT) and superoxide dismutase (SOD) increased significantly, and (6) leaf malondialdehyde (MDA) content increased significantly and stomatal area and chlorophyll content decline were also detected. Severe salt stress (200 mM NaCl) inhibited plantlet growth. These results indicated that potato plantlets adapt to salt stress to some extent through accumulating osmoprotectants, such as proline, increasing the activities of antioxidant enzymes, such as CAT and SOD. The outcomes of this study provide ultrastructural and physiological insights into characterizing potential damages induced by salt stress for selecting salt-tolerant potato cultivars.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA