Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 15(723): eade8460, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37992151

RESUMO

Despite their high degree of effectiveness in the management of psychiatric conditions, exposure to antipsychotic drugs, including olanzapine and risperidone, is frequently associated with substantial weight gain and the development of diabetes. Even before weight gain, a rapid rise in circulating leptin concentrations can be observed in most patients taking antipsychotic drugs. To date, the contribution of this hyperleptinemia to weight gain and metabolic deterioration has not been defined. Here, with an established mouse model that recapitulates antipsychotic drug-induced obesity and insulin resistance, we not only confirm that hyperleptinemia occurs before weight gain but also demonstrate that hyperleptinemia contributes directly to the development of obesity and associated metabolic disorders. By suppressing the rise in leptin through the use of a monoclonal leptin-neutralizing antibody, we effectively prevented weight gain, restored glucose tolerance, and preserved adipose tissue and liver function in antipsychotic drug-treated mice. Mechanistically, suppressing excess leptin resolved local tissue and systemic inflammation typically associated with antipsychotic drug treatment. We conclude that hyperleptinemia is a key contributor to antipsychotic drug-associated weight gain and metabolic deterioration. Leptin suppression may be an effective approach to reducing the undesirable side effects of antipsychotic drugs.


Assuntos
Antipsicóticos , Doenças Metabólicas , Humanos , Camundongos , Animais , Antipsicóticos/efeitos adversos , Leptina/metabolismo , Obesidade/metabolismo , Aumento de Peso
2.
Nat Metab ; 5(1): 147-164, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36593271

RESUMO

Leptin acts on hypothalamic neurons expressing agouti-related protein (AgRP) or pro-opiomelanocortin (POMC) to suppress appetite and increase energy expenditure, but the intracellular mechanisms that modulate central leptin signalling are not fully understood. Here we show that growth factor receptor-bound protein 10 (Grb10), an adaptor protein that binds to the insulin receptor and negatively regulates its signalling pathway, can interact with the leptin receptor and enhance leptin signalling. Ablation of Grb10 in AgRP neurons promotes weight gain, while overexpression of Grb10 in AgRP neurons reduces body weight in male and female mice. In parallel, deletion or overexpression of Grb10 in POMC neurons exacerbates or attenuates diet-induced obesity, respectively. Consistent with its role in leptin signalling, Grb10 in AgRP and POMC neurons enhances the anorexic and weight-reducing actions of leptin. Grb10 also exaggerates the inhibitory effects of leptin on AgRP neurons via ATP-sensitive potassium channel-mediated currents while facilitating the excitatory drive of leptin on POMC neurons through transient receptor potential channels. Our study identifies Grb10 as a potent leptin sensitizer that contributes to the maintenance of energy homeostasis by enhancing the response of AgRP and POMC neurons to leptin.


Assuntos
Leptina , Pró-Opiomelanocortina , Camundongos , Masculino , Feminino , Animais , Proteína Relacionada com Agouti/metabolismo , Leptina/metabolismo , Pró-Opiomelanocortina/metabolismo , Proteína Adaptadora GRB10/metabolismo , Redução de Peso
3.
Sci Adv ; 8(38): eabq1799, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36129988

RESUMO

Pancreatic ß cell failure is a hallmark of diabetes. However, the causes of ß cell failure remain incomplete. Here, we report the identification of tetranectin (TN), an adipose tissue-enriched secretory molecule, as a negative regulator of insulin secretion in ß cells in diabetes. TN expression is stimulated by high glucose in adipocytes via the p38 MAPK/TXNIP/thioredoxin/OCT4 signaling pathway, and elevated serum TN levels are associated with diabetes. TN treatment greatly exacerbates hyperglycemia in mice and suppresses glucose-stimulated insulin secretion in islets. Conversely, knockout of TN or neutralization of TN function notably improves insulin secretion and glucose tolerance in high-fat diet-fed mice. Mechanistically, TN binds with high selectivity to ß cells and inhibits insulin secretion by blocking L-type Ca2+ channels. Our study uncovers an adipocyte-ß cell cross-talk that contributes to ß cell dysfunction in diabetes and suggests that neutralization of TN levels may provide a new treatment strategy for type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Adipócitos/metabolismo , Animais , Glucose/metabolismo , Insulina/metabolismo , Secreção de Insulina , Lectinas Tipo C , Camundongos , Tiorredoxinas , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
4.
Commun Biol ; 5(1): 771, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35915318

RESUMO

A unique feature of the liver is its high regenerative capacity, which is essential to maintain liver homeostasis. However, key regulators of liver regeneration (LR) remain ill-defined. Here, we identify hepatic miR-182-5p as a key regulator of LR. Suppressing miR-182-5p, whose expression is significantly induced in the liver of mice post two-thirds partial hepatectomy (PH), abrogates PH-induced LR in mice. In contrast, liver-specific overexpression of miR-182-5p promotes LR in mice with PH. Overexpression of miR-182-5p failed to promote proliferation in hepatocytes, but stimulates proliferation when hepatocytes are cocultured with stellate cells. Mechanistically, miR-182-5p stimulates Cyp7a1-mediated cholic acid production in hepatocytes, which promotes hedgehog (Hh) ligand production in stellate cells, leading to the activation of Hh signaling in hepatocytes and consequent cell proliferation. Collectively, our study identified miR-182-5p as a critical regulator of LR and uncovers a Cyp7a1/cholic acid-dependent mechanism by which hepatocytes crosstalk to stellate cells to facilitate LR.


Assuntos
Regeneração Hepática , MicroRNAs , Animais , Ácido Cólico/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Hepatócitos/metabolismo , Regeneração Hepática/genética , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo
6.
Protein Cell ; 13(2): 90-101, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34374004

RESUMO

The cyclic GMP-AMP (cGAMP) synthase (cGAS) has been identified as a cytosolic double stranded DNA sensor that plays a pivotal role in the type I interferon and inflammation responses via the STING-dependent signaling pathway. In the past several years, a growing body of evidence has revealed that cGAS is also localized in the nucleus where it is associated with distinct nuclear substructures such as nucleosomes, DNA replication forks, the double-stranded breaks, and centromeres, suggesting that cGAS may have other functions in addition to its role in DNA sensing. However, while the innate immune function of cGAS is well established, the non-canonical nuclear function of cGAS remains poorly understood. Here, we review our current understanding of the complex nature of nuclear cGAS and point to open questions on the novel roles and the mechanisms of action of this protein as a key regulator of cell nuclear function, beyond its well-established role in dsDNA sensing and innate immune response.


Assuntos
Núcleo Celular/imunologia , Imunidade Inata , Nucleotidiltransferases/imunologia , Transdução de Sinais/imunologia , Núcleo Celular/genética , Humanos , Nucleotidiltransferases/genética , Transdução de Sinais/genética
7.
J Clin Invest ; 131(24)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34730111

RESUMO

Dysregulation in adipokine biosynthesis and function contributes to obesity-induced metabolic diseases. However, the identities and functions of many of the obesity-induced secretory molecules remain unknown. Here, we report the identification of leucine-rich alpha-2-glycoprotein 1 (LRG1) as an obesity-associated adipokine that exacerbates high fat diet-induced hepatosteatosis and insulin resistance. Serum levels of LRG1 were markedly elevated in obese humans and mice compared with their respective controls. LRG1 deficiency in mice greatly alleviated diet-induced hepatosteatosis, obesity, and insulin resistance. Mechanistically, LRG1 bound with high selectivity to the liver and promoted hepatosteatosis by increasing de novo lipogenesis and suppressing fatty acid ß-oxidation. LRG1 also inhibited hepatic insulin signaling by downregulating insulin receptor substrates 1 and 2. Our study identified LRG1 as a key molecule that mediates the crosstalk between adipocytes and hepatocytes in diet-induced hepatosteatosis and insulin resistance. Suppressing LRG1 expression and function may be a promising strategy for the treatment of obesity-related metabolic diseases.


Assuntos
Adipocinas/metabolismo , Fígado Gorduroso/metabolismo , Glicoproteínas/metabolismo , Resistência à Insulina , Obesidade/metabolismo , Adipocinas/genética , Animais , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Fígado Gorduroso/genética , Glicoproteínas/genética , Humanos , Camundongos , Camundongos Knockout , Obesidade/genética , Oxirredução
8.
J Mol Cell Biol ; 13(10): 728-738, 2021 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-34665236

RESUMO

The cyclic GMP‒AMP synthase (cGAS)‒stimulator of interferon genes (STING) signaling pathway senses the presence of cytosolic DNA and, in turn, triggers downstream signaling to induce the expression of inflammatory and type I interferon genes in immune cells. Whereas the innate immune function of the cGAS‒STING pathway is well studied over the past years, emerging evidence suggests that this signaling pathway may have additional functions beyond innate immune surveillance. Consistent with this notion, dysregulation of the cGAS‒STING signaling pathway in adipocytes, hepatocytes, and renal proximal tubule epithelial cells are associated with metabolic dysfunction, impaired energy homeostasis, and kidney diseases. In this review, we summarize current understanding of the cGAS‒STING pathway in several metabolic diseases such as obesity, insulin resistance, alcoholic and nonalcoholic fatty liver diseases, as well as acute kidney injury and chronic kidney disease. We also review the interaction between the cGAS‒STING pathway and lipid metabolism. Lastly, we discuss potential mechanisms by which cGAS‒STING signaling regulates metabolism and point toward future avenues of research targeting the cGAS‒STING pathway as possible means to treat common metabolic disorders.


Assuntos
Injúria Renal Aguda , Interferon Tipo I , Humanos , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Transdução de Sinais
9.
JCI Insight ; 6(17)2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34264867

RESUMO

A dynamically regulated microenvironment, which is mediated by crosstalk between adipocytes and neighboring cells, is critical for adipose tissue homeostasis and function. However, information on key molecules and/or signaling pathways regulating the crosstalk remains limited. In this study, we identify adipocyte miRNA-182-5p (miR-182-5p) as a crucial antiobesity molecule that stimulated beige fat thermogenesis by promoting the crosstalk between adipocytes and macrophages. miR-182-5p was highly enriched in thermogenic adipocytes, and its expression was markedly stimulated by cold exposure in mice. In contrast, miR-182-5p expression was significantly reduced in adipose tissues of obese humans and mice. Knockout of miR-185-5p decreased cold-induced beige fat thermogenesis whereas overexpression of miR-185-5p increased beiging and thermogenesis in mice. Mechanistically, miR-182-5p promoted FGF21 expression and secretion in adipocytes by suppressing nuclear receptor subfamily 1 group D member 1 (Nr1d1) at 5'-UTR, which in turn stimulates acetylcholine synthesis and release in macrophages. Increased acetylcholine expression activated the nicotine acetylcholine receptor in adipocytes, which stimulated PKA signaling and consequent thermogenic gene expression. Our study reveals a key role of the miR-182-5p/FGF21/acetylcholine/acetylcholine receptor axis that mediates the crosstalk between adipocytes and macrophages to promote beige fat thermogenesis. Activation of the miR-182-5p-induced signaling pathway in adipose tissue may be an effective approach to ameliorate obesity and associated metabolic diseases.


Assuntos
Acetilcolina/genética , Adipócitos/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Macrófagos/metabolismo , MicroRNAs/genética , Obesidade/genética , Termogênese/genética , Acetilcolina/biossíntese , Adipócitos/patologia , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Animais , Modelos Animais de Doenças , Fatores de Crescimento de Fibroblastos/biossíntese , Macrófagos/patologia , Camundongos , Camundongos Knockout , MicroRNAs/biossíntese , Obesidade/metabolismo , Obesidade/patologia , Transdução de Sinais
10.
Nat Commun ; 12(1): 326, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436607

RESUMO

Adipose tissue-resident T cells have been recognized as a critical regulator of thermogenesis and energy expenditure, yet the underlying mechanisms remain unclear. Here, we show that high-fat diet (HFD) feeding greatly suppresses the expression of disulfide-bond A oxidoreductase-like protein (DsbA-L), a mitochondria-localized chaperone protein, in adipose-resident T cells, which correlates with reduced T cell mitochondrial function. T cell-specific knockout of DsbA-L enhances diet-induced thermogenesis in brown adipose tissue (BAT) and protects mice from HFD-induced obesity, hepatosteatosis, and insulin resistance. Mechanistically, DsbA-L deficiency in T cells reduces IFN-γ production and activates protein kinase A by reducing phosphodiesterase-4D expression, leading to increased BAT thermogenesis. Taken together, our study uncovers a mechanism by which T cells communicate with brown adipocytes to regulate BAT thermogenesis and whole-body energy homeostasis. Our findings highlight a therapeutic potential of targeting T cells for the treatment of over nutrition-induced obesity and its associated metabolic diseases.


Assuntos
Dieta Hiperlipídica , Glutationa Transferase/deficiência , Interferon gama/biossíntese , Linfócitos T/metabolismo , Termogênese , Adipócitos Marrons/efeitos dos fármacos , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Animais , Regulação para Baixo/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Comportamento Alimentar , Glutationa Transferase/metabolismo , Resistência à Insulina , Interferon gama/administração & dosagem , Interferon gama/farmacologia , Masculino , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Obesidade/genética , Obesidade/patologia , Linfócitos T/efeitos dos fármacos , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/metabolismo , Termogênese/efeitos dos fármacos , Termogênese/genética , Proteína Desacopladora 1/metabolismo
11.
Commun Biol ; 3(1): 257, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32444826

RESUMO

Obesity is a global epidemic that is caused by excessive energy intake or inefficient energy expenditure. Brown or beige fat dissipates energy as heat through non-shivering thermogenesis by their high density of mitochondria. However, how the mitochondrial stress-induced signal is coupled to the cellular thermogenic program remains elusive. Here, we show that mitochondrial DNA escape-induced activation of the cGAS-STING pathway negatively regulates thermogenesis in fat-specific DsbA-L knockout mice, a model of adipose tissue mitochondrial stress. Conversely, fat-specific overexpression of DsbA-L or knockout of STING protects mice against high-fat diet-induced obesity. Mechanistically, activation of the cGAS-STING pathway in adipocytes activated phosphodiesterase PDE3B/PDE4, leading to decreased cAMP levels and PKA signaling, thus reduced thermogenesis. Our study demonstrates that mitochondrial stress-activated cGAS-STING pathway functions as a sentinel signal that suppresses thermogenesis in adipose tissue. Targeting adipose cGAS-STING pathway may thus be a potential therapeutic strategy to counteract overnutrition-induced obesity and its associated metabolic diseases.


Assuntos
Glutationa Transferase/fisiologia , Proteínas de Membrana/metabolismo , Mitocôndrias/patologia , Nucleotidiltransferases/metabolismo , Obesidade/etiologia , Hipernutrição/complicações , Termogênese , Adipócitos/metabolismo , Adipócitos/patologia , Animais , Dieta Hiperlipídica , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Nucleotidiltransferases/genética , Obesidade/metabolismo , Obesidade/patologia , Estresse Fisiológico
12.
Cells ; 8(10)2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31554182

RESUMO

Adiponectin is an adipokine with anti-insulin resistance and anti-inflammatory functions. It exists in serum predominantly in three multimeric complexes: the trimer, hexamer, and high-molecular-weight forms. Although recent studies indicate that adiponectin promotes wound healing in rodents, its role in the wound healing process in humans is unknown. This study investigated the expression levels of adiponectin in adipose tissue and serum of women who experienced either normal or delayed wound healing after abdominal plastic surgery. We found that obese women with delayed healing had slightly lower total adiponectin levels in their adipose tissue compared with women with normal healing rates. Among the different isoforms of adiponectin, levels of the trimer forms were significantly reduced in adipose tissue, but not the serum, of obese women with delayed healing compared to women who healed normally. This study provides clinical evidence for a potential role of low-molecular-weight oligomers of adiponectin in the wound healing process as well as implications for an autocrine and/or paracrine mechanism of adiponectin action in adipose tissues.


Assuntos
Adiponectina/fisiologia , Obesidade/fisiopatologia , Cicatrização/fisiologia , Adiponectina/sangue , Adiponectina/genética , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Adulto , Idoso , Comunicação Autócrina/fisiologia , Estudos de Casos e Controles , Feminino , Humanos , Pessoa de Meia-Idade , Obesidade/sangue , Obesidade/complicações , Obesidade/genética , Comunicação Parácrina/fisiologia , Isoformas de Proteínas/sangue , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia , Fatores de Tempo , Adulto Jovem
13.
J Mol Cell Biol ; 11(9): 781-790, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31220300

RESUMO

Increasing brown and beige fat thermogenesis have an anti-obesity effect and thus great metabolic benefits. However, the molecular mechanisms regulating brown and beige fat thermogenesis remain to be further elucidated. We recently found that fat-specific knockout of Rheb promoted beige fat thermogenesis. In the current study, we show that Rheb has distinct effects on thermogenic gene expression in brown and beige fat. Fat-specific knockout of Rheb decreased protein kinase A (PKA) activity and thermogenic gene expression in brown adipose tissue of high-fat diet-fed mice. On the other hand, overexpression of Rheb activated PKA and increased uncoupling protein 1 expression in brown adipocytes. Mechanistically, Rheb overexpression in brown adipocytes increased Notch expression, leading to disassociation of the regulatory subunit from the catalytic subunit of PKA and subsequent PKA activation. Our study demonstrates that Rheb, by selectively modulating thermogenic gene expression in brown and beige adipose tissues, plays an important role in regulating energy homeostasis.


Assuntos
Tecido Adiposo Marrom/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Termogênese , Adipócitos/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Metabolismo Energético , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Modelos Biológicos , Obesidade/metabolismo , Proteína Enriquecida em Homólogo de Ras do Encéfalo/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
14.
Diabetes ; 68(6): 1099-1108, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31109939

RESUMO

It has been appreciated for many years that there is a strong association between metabolism and immunity in advanced metazoan organisms. Distinct immune signatures and signaling pathways have been found not only in immune but also in metabolic cells. The newly discovered DNA-sensing cGAS-cGAMP-STING pathway mediates type I interferon inflammatory responses in immune cells to defend against viral and bacterial infections. Recent studies show that this pathway is also activated by host DNA aberrantly localized in the cytosol, contributing to increased sterile inflammation, insulin resistance, and the development of nonalcoholic fatty liver disease (NAFLD). Potential interactions of the cGAS-cGAMP-STING pathway with mTORC1 signaling, autophagy, and apoptosis have been reported, suggesting an important role of the cGAS-cGAMP-STING pathway in the networking and coordination of these important biological processes. However, the regulation, mechanism of action, and tissue-specific role of the cGAS-cGAMP-STING signaling pathway in metabolic disorders remain largely elusive. It is also unclear whether targeting this signaling pathway is effective for the prevention and treatment of obesity-induced metabolic diseases. Answers to these questions would provide new insights for developing effective therapeutic interventions for metabolic diseases such as insulin resistance, NAFLD, and type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/imunologia , Resistência à Insulina/imunologia , Proteínas de Membrana/imunologia , Hepatopatia Gordurosa não Alcoólica/imunologia , Nucleotídeos Cíclicos/imunologia , Nucleotidiltransferases/imunologia , Obesidade/imunologia , Apoptose/imunologia , Autofagia/imunologia , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Inflamação , Interferon Tipo I/imunologia , Alvo Mecanístico do Complexo 1 de Rapamicina/imunologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas de Membrana/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Nucleotídeos Cíclicos/metabolismo , Nucleotidiltransferases/metabolismo , Obesidade/metabolismo , Transdução de Sinais
15.
Proc Natl Acad Sci U S A ; 114(46): 12196-12201, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29087318

RESUMO

Chronic inflammation in adipose tissue plays a key role in obesity-induced insulin resistance. However, the mechanisms underlying obesity-induced inflammation remain elusive. Here we show that obesity promotes mtDNA release into the cytosol, where it triggers inflammatory responses by activating the DNA-sensing cGAS-cGAMP-STING pathway. Fat-specific knockout of disulfide-bond A oxidoreductase-like protein (DsbA-L), a chaperone-like protein originally identified in the mitochondrial matrix, impaired mitochondrial function and promoted mtDNA release, leading to activation of the cGAS-cGAMP-STING pathway and inflammatory responses. Conversely, fat-specific overexpression of DsbA-L protected mice against high-fat diet-induced activation of the cGAS-cGAMP-STING pathway and inflammation. Taken together, we identify DsbA-L as a key molecule that maintains mitochondrial integrity. DsbA-L deficiency promotes inflammation and insulin resistance by activating the cGAS-cGAMP-STING pathway. Our study also reveals that, in addition to its well-characterized roles in innate immune surveillance, the cGAS-cGAMP-STING pathway plays an important role in mediating obesity-induced metabolic dysfunction.


Assuntos
DNA Mitocondrial/metabolismo , Glutationa Transferase/genética , Resistência à Insulina , Proteínas de Membrana/genética , Nucleotidiltransferases/genética , Obesidade/genética , Células 3T3-L1 , Adipócitos/metabolismo , Adipócitos/patologia , Animais , Dieta Hiperlipídica/efeitos adversos , Regulação da Expressão Gênica , Glutationa Transferase/deficiência , Humanos , Inflamação , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Nucleotidiltransferases/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia , Cultura Primária de Células , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transdução de Sinais
17.
Diabetes ; 66(5): 1198-1213, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28242620

RESUMO

Beiging of white adipose tissue has potential antiobesity and antidiabetes effects, yet the underlying signaling mechanisms remain to be fully elucidated. Here we show that adipose-specific knockout of Rheb, an upstream activator of mechanistic target of rapamycin complex 1 (mTORC1), protects mice from high-fat diet-induced obesity and insulin resistance. On the one hand, Rheb deficiency in adipose tissue reduced mTORC1 signaling, increased lipolysis, and promoted beiging and energy expenditure. On the other hand, overexpression of Rheb in primary adipocytes significantly inhibited CREB phosphorylation and uncoupling protein 1 (UCP1) expression. Mechanistically, fat-specific knockout of Rheb increased cAMP levels, cAMP-dependent protein kinase (PKA) activity, and UCP1 expression in subcutaneous white adipose tissue. Interestingly, treating primary adipocytes with rapamycin only partially alleviated the suppressing effect of Rheb on UCP1 expression, suggesting the presence of a novel mechanism underlying the inhibitory effect of Rheb on thermogenic gene expression. Consistent with this notion, overexpression of Rheb stabilizes the expression of cAMP-specific phosphodiesterase 4D5 (PDE4D5) in adipocytes, whereas knockout of Rheb greatly reduced cellular levels of PDE4D5 concurrently with increased cAMP levels, PKA activation, and UCP1 expression. Taken together, our findings reveal Rheb as an important negative regulator of beige fat development and thermogenesis. In addition, Rheb is able to suppress the beiging effect through an mTORC1-independent mechanism.


Assuntos
Adipócitos/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Metabolismo Energético/genética , Resistência à Insulina/genética , Proteínas Monoméricas de Ligação ao GTP/genética , Neuropeptídeos/genética , Obesidade/genética , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Dieta Hiperlipídica , Regulação para Baixo , Regulação da Expressão Gênica , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Knockout , Complexos Multiproteicos/metabolismo , Fosforilação , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Proteína Desacopladora 1/genética
18.
FASEB J ; 31(6): 2314-2326, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28232481

RESUMO

Hepatic insulin resistance and hepatosteatosis in diet-induced obesity are associated with various metabolic diseases, yet the underlying mechanisms remain to be fully elucidated. Here we show that the expression levels of the disulfide-bond A oxidoreductase-like protein (DsbA-L) are significantly reduced in the liver of obese mice and humans. Liver-specific knockout or adenovirus-mediated overexpression of DsbA-L exacerbates or alleviates, respectively, high-fat diet-induced mitochondrial dysfunction, hepatosteatosis, and insulin resistance in mice. Mechanistically, we found that DsbA-L is localized in mitochondria and that its deficiency is associated with impairment of maximum respiratory capacity, elevated cellular oxidative stress, and increased JNK activity. Our results identify DsbA-L as a critical regulator of mitochondrial function, and its down-regulation in the liver may contribute to obesity-induced hepatosteatosis and whole body insulin resistance.-Chen, H., Bai, J., Dong, F., Fang, H., Zhang, Y., Meng, W., Liu, B., Luo, Y., Liu, M., Bai, Y., Abdul-Ghani, M. A., Li, R., Wu, J., Zeng, R., Zhou, Z., Dong, L. Q., Liu, F. Hepatic DsbA-L protects mice from diet-induced hepatosteatosis and insulin resistance.


Assuntos
Gorduras na Dieta/efeitos adversos , Fígado Gorduroso/induzido quimicamente , Glutationa Transferase/metabolismo , Resistência à Insulina/fisiologia , Fígado/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Regulação Enzimológica da Expressão Gênica , Técnica Clamp de Glucose , Glutationa Transferase/genética , Hepatócitos , Humanos , Fígado/enzimologia , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias Hepáticas/metabolismo , Estresse Oxidativo , Consumo de Oxigênio
19.
Cell Metab ; 19(6): 967-80, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24746805

RESUMO

Identification of key regulators of lipid metabolism and thermogenic functions has important therapeutic implications for the current obesity and diabetes epidemic. Here, we show that Grb10, a direct substrate of mechanistic/mammalian target of rapamycin (mTOR), is expressed highly in brown adipose tissue, and its expression in white adipose tissue is markedly induced by cold exposure. In adipocytes, mTOR-mediated phosphorylation at Ser501/503 switches the binding preference of Grb10 from the insulin receptor to raptor, leading to the dissociation of raptor from mTOR and downregulation of mTOR complex 1 (mTORC1) signaling. Fat-specific disruption of Grb10 increased mTORC1 signaling in adipose tissues, suppressed lipolysis, and reduced thermogenic function. The effects of Grb10 deficiency on lipolysis and thermogenesis were diminished by rapamycin administration in vivo. Our study has uncovered a unique feedback mechanism regulating mTORC1 signaling in adipose tissues and identified Grb10 as a key regulator of adiposity, thermogenesis, and energy expenditure.


Assuntos
Metabolismo Energético/fisiologia , Proteína Adaptadora GRB10/metabolismo , Lipólise/fisiologia , Complexos Multiproteicos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Termogênese/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Antibióticos Antineoplásicos/farmacologia , Células Cultivadas , Temperatura Baixa , Resposta ao Choque Frio , Diabetes Mellitus , Retroalimentação Fisiológica , Proteína Adaptadora GRB10/biossíntese , Resistência à Insulina , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Knockout , Complexos Multiproteicos/antagonistas & inibidores , Obesidade , Fosfatidilinositol 3-Quinases , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt , Receptor de Insulina/metabolismo , Proteína Regulatória Associada a mTOR , Transdução de Sinais/fisiologia , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores
20.
Environ Mol Mutagen ; 51(2): 112-22, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19621461

RESUMO

Sulfur dioxide (SO(2)) is a common air pollutant that is released in low concentrations into the atmosphere and in higher concentrations in some work places. In the present study, male Wistar rats were housed in exposure chambers and treated with 14.00 +/- 1.01, 28.00 +/- 1.77, and 56.00 +/- 3.44 mg/m(3) SO(2) for 7 days (6 hr/day), while control rats were exposed to filtered air under the same conditions. The mRNA and protein levels of caspase-3, caspase-8, and caspase-9 were analyzed using a real-time reverse transcription-polymerase chain reaction (real-time RT-PCR) assay and an immunohistochemistry method. Activities of caspases were detected using colorimetric and fluorescent assays. Chromatin degradation and cell morphological changes were investigated by TUNEL assay and H&E staining in livers and lungs, respectively. The results showed that mRNA levels, protein levels and activities of caspase-3, caspase-8, and caspase-9 were increased in a dose-dependent manner in livers and lungs of rats after SO(2) inhalation. In addition, livers were infiltrated with lymphocytes, congestion and inflammation occurred in lungs, and eosinophil cells and apoptotic cells increased in both livers and lungs after SO(2) inhalation. These results suggest that SO(2) exposure increases the expression and activity of both initiator and and effector caspases, and may induce apoptosis in liver and lung of rats through both death receptor and mitochondrial pathways.


Assuntos
Apoptose/efeitos dos fármacos , Caspases/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Dióxido de Enxofre/toxicidade , Administração por Inalação , Poluentes Ocupacionais do Ar/toxicidade , Animais , Apoptose/genética , Caspase 3/genética , Caspase 3/metabolismo , Caspase 8/genética , Caspase 8/metabolismo , Caspase 9/genética , Caspase 9/metabolismo , Caspases/genética , Relação Dose-Resposta a Droga , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Masculino , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Dióxido de Enxofre/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA