Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(14)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39064882

RESUMO

Heterostructure catalysts are highly anticipated in the field of photocatalytic water splitting. AlN/Sc2CF2 and GaN/Sc2CF2 heterostructures are proposed in this work, and the electronic structures were revealed with the first-principles method to explore their photocatalytic properties for water splitting. The results found that the thermodynamically stable AlN/Sc2CF2 and GaN/Sc2CF2 heterostructures are indirect semiconductors with reduced band gaps of 1.75 eV and 1.84 eV, respectively. These two heterostructures have been confirmed to have type-Ⅰ band alignments, with both VBM and CBM contributed to by the Sc2CF2 layer. AlN/Sc2CF2 and GaN/Sc2CF2 heterostructures exhibit the potential for photocatalytic water splitting as their VBM and CBM stride over the redox potential of water. Gibbs free energy changes in HER occurring on AlN/Sc2CF2 and GaN/Sc2CF2 heterostructures are as low as -0.31 eV and -0.59 eV, respectively. The Gibbs free energy change in HER on the AlN (GaN) layer is much lower than that on the Sc2CF2 surface, owing to the stronger adsorption of H on AlN (GaN). The AlN/Sc2CF2 and GaN/Sc2CF2 heterostructures possess significant improvements in absorption range and intensity compared to monolayered AlN, GaN, and Sc2CF2. In addition, the band gaps, edge positions, and absorption properties of AlN/Sc2CF2 and GaN/Sc2CF2 heterostructures can be effectively tuned with strains. All the results indicate that AlN/Sc2CF2 and GaN/Sc2CF2 heterostructures are suitable catalysts for photocatalytic water splitting.

2.
Chem Commun (Camb) ; 59(40): 6012-6015, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37114379

RESUMO

The high price of Co and Ni restricts the development of the lithium-ion battery industry. Reducing the Ni content and eliminating Co is an effective way to lower the cost. In this work, we eliminate the Co in NCM523 cathodes by using a complex concentrated doping strategy. LiNi0.5Mn0.4Ti0.03Mg0.03Nb0.01Mo0.03O2 shows an unparalleled cost advantage with relatively high specific energy (>720 W h kg-1) and significantly improved overall performance (96% capacity retained after 1000 cycles). This report offers an important pathway to fabricate cathode materials for low-cost and long-life LIBs.

3.
Front Chem ; 10: 1048437, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36339040

RESUMO

The construction of van der Waals heterostructures offers effective boosting of the photocatalytic performance of two-dimensional materials. In this study, which uses the first-principles method, the electronic and absorptive properties of an emerging ZnO/C2N heterostructure are systematically explored to determine the structure's photocatalytic potential. The results demonstrate that ZnO and C2N form a type-II band alignment heterostructure with a reduced band gap, and hence superior absorption in the visible region. Furthermore, the band edge positions of a ZnO/C2N heterostructure meet the requirements for spontaneous water splitting. The ZnO/C2N heterostructure is known to possess considerably improved carrier mobility, which is advantageous in the separation and migration of carriers. The Gibbs free energy calculation confirms the high catalytic activity of the ZnO/C2N heterostructure for water-splitting reactions. All the aforementioned properties, including band gap, band edge positions, and optical absorption, can be directly tuned using biaxial lateral strain. A suitable band gap, decent band edge positions, high catalytic activity, and superior carrier mobility thus identify a ZnO/C2N heterostructure as a prominent potential photocatalyst for water splitting.

4.
Nanomaterials (Basel) ; 12(20)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36296762

RESUMO

With the development of electronic appliances and electronic equipment towards miniaturization, lightweight and high-power density, the heat generated and accumulated by devices during high-speed operation seriously reduces the working efficiency and service life of the equipment. The key to solving this problem is to develop high-performance thermal management materials and improve the heat dissipation efficiency of the equipment. This paper mainly summarizes the research progress of polymer composites with high thermal conductivity and electrical insulation, including the thermal conductivity mechanism of composites, the factors affecting the thermal conductivity of composites, and the research status of thermally conductive and electrical insulation polymer composites in recent years. Finally, we look forward to the research focus and urgent problems that should be addressed of high-performance thermal conductive composites, which will provide strategies for further development and application of advanced thermal and electrical insulation composites.

5.
J Colloid Interface Sci ; 628(Pt B): 768-776, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36029591

RESUMO

Utilizing solar energy to convert carbon dioxide (CO2) into chemical fuels could simultaneously mitigate the greenhouse effect and fossil fuel crisis. Herein, a heterogeneous photocatalyst of ZnO nanofiber deposited by Pt nanoparticles was successfully synthesized toward photocatalytic CO2 reduction via radio-frequency thermal plasma and photo-deposition method. The Pt nanoparticles were introduced on the surface of ZnO nanofibers to broaden the light absorption and utilization, increase the additional reaction active sites and facilitate the separation of photo-generated electron/hole pairs. Combined with the natural advantages of short transfer path of charge carriers and self-support effecting in humid reaction environment for nanofibers, the Pt/ZnO hetero-junction nanocomposites displayed superior photocatalytic activity for CO2 reduction with respect to bare ZnO nanofibers, affording a CO-production rate as high as 45.76 µmol g-1 h-1 under 300 W Xe lamp irradiation within a gas-solid reaction system. Furthermore, in-suit Fourier transform infrared (FTIR) spectra were applied to unveil the details during photocatalytic CO2 reduction. This work presents a hetero-junction nanocomposite photocatalyst based on eco-friendly semiconductor and metal materials.

6.
Front Oncol ; 12: 816270, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756642

RESUMO

Background: Perineural invasion (PNI) is a malignant metastatic mode of tumors and has been reported in many tumors including esophageal cancer (EC). However, the role of PNI in EC has been reported differently. This systematic review and meta-analysis aims to focus on the role of PNI in EC. Methods: Eight databases of CNKI, VIP, Wanfang, Scopus, Wiley, ISI, PubMed, and EBSCO are used for literature search. The association of PNI with gender, pathological stages of T and N (pT and pN), lymphovascular invasion (LVI), lymph node metastasis, 5-year overall survival (OS), and 5-year disease-free survival (DFS) was examined in the meta-analysis by Revman5.0 Software. The pooled OR/HR and 95% CI were used to assess the risk and prognostic value. Results: Sixty-nine published studies were screened for analysis of PNI in EC. The incidence of PNI in esophageal squamous carcinoma (ESCC) and esophageal adenocarcinoma (EAC) was different, but not statistically significant (p > 0.05). The PNI-positive patients had a significantly higher risk of pT stage (OR = 3.85, 95% CI = 2.45-6.05, p < 0.00001), pN stage (OR = 1.86, 95% CI = 1.52-2.28, p < 0.00001), LVI (OR = 2.44, 95% CI = 1.55-3.85, p = 0.0001), and lymph node metastasis (OR = 2.87, 95% CI = 1.56-5.29, p = 0.0007). Furthermore, the cumulative analysis revealed a significant correlation between PNI and poor OS (HR = 1.37, 95% CI = 1.24-1.51, p < 0.0001), as well as poor DFS (HR = 1.55, 95% CI = 1.38-1.74, p < 0.0001). Conclusion: PNI occurrence is significantly related to tumor stage, LVI, lymph node metastasis, OS, and DFS. These results indicate that PNI can serve as an indicator of high malignant degree and poor prognosis in EC.

7.
Nanomaterials (Basel) ; 11(10)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34685093

RESUMO

In this paper, we report a thermal conductive polymer composite that consists of silicone rubber (SR) and branched Al2O3 (B-Al2O3). Owing to the unique two-dimensional branched structure, B-Al2O3 particles form a continuous three-dimensional network structure by overlapping each other in the matrix, serving as a continuous heat conductive pathway. As a result, the polymer composite with a 70 wt% filler achieves a maximum thermal conductivity of 1.242 Wm-1 K-1, which is equivalent to a significant enhancement of 521% compared to that of a pure matrix. In addition, the composite maintains a high volume resistivity of 7.94 × 1014 Ω·cm with the loading of 70 wt%, indicating that it meets the requirements in the field of electrical insulation. Moreover, B-Al2O3 fillers are well dispersed (no large agglomerates) and form a strong interfacial adhesion with the matrix. Therefore, the thermal decomposition temperature, residual mass, tensile strength, modulus and modulus of toughness of composites are significantly improved simultaneously. This strategy provides new insights for the design of high-performance polymer composites with potential application in advanced thermal management in modern electronics.

8.
Nanomaterials (Basel) ; 11(9)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34578661

RESUMO

ZrB2 is of particular interest among ultra-high temperature ceramics because it exhibits excellent thermal resistance at high temperature, as well as chemical stability, high hardness, low cost, and good electrical and thermal conductivity, which meet the requirements of high-temperature components of hyper-sonic aircraft in extreme environments. As raw materials and basic units of ultra-high temperature ceramics and their composites, ZrB2 powders provide an important way for researchers to improve material properties and explore new properties by way of synthesis design and innovation. In recent years, the development of ZrB2 powders' synthesis method has broken through the classification of traditional solid-phase method, liquid-phase method, and gas-phase method, and there is a trend of integration of them. The present review covers the most important methods used in ZrB2 nanopowder synthesis, focusing on the solid-phase synthesis and its improved process, including modified self-propagating high-temperature synthesis, solution-derived precursor method, and plasma-enhanced exothermic reaction. Specific examples and strategies in synthesis of ZrB2 nano powders are introduced, followed by challenges and the perspectives on future directions. The integration of various synthesis methods, the combination of different material components, and the connection between synthesis and its subsequent application process is the trend of development in the future.

9.
Nanomaterials (Basel) ; 10(12)2020 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-33322726

RESUMO

Ultrafine ZrB2-ZrC composite powders were synthesized via a radiofrequency (RF) thermal plasma process. Numerical simulation and thermodynamic analysis were conducted to predict the synthesis process, and experimental work was performed accordingly to demonstrate its feasibility. The as-prepared samples were characterized by XRD, FESEM, particle size analyzer, nitrogen/oxygen analyzer, Hall flowmeter, and the Brunner-Emmet-Teller (BET) measurements. The thermodynamic analysis indicated that ZrB2 was preferentially generated, rather than ZrC, and numerical simulation revealed that the solid raw materials could disperse well in the gaseous reactants, and experimental work showed that free carbon particles were easily removed from the products and the elements of Zr, B, C, and O exhibited a uniform distribution. Finally, ZrB2-ZrC composite powders with a particle size of about 100 nm were obtained, the surface area of which was 32.15 m2/g and the apparent density was 0.57 g/cm3.

10.
Nanomaterials (Basel) ; 10(9)2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32887500

RESUMO

Single nanowires (NWs) are of great importance for optoelectronic applications, especially solar cells serving as powering nanoscale devices. However, weak off-resonant absorption can limit its light-harvesting capability. Here, we propose a single NW coated with the graded-index dual shells (DSNW). We demonstrate that, with appropriate thickness and refractive index of the inner shell, the DSNW exhibits significantly enhanced light trapping compared with the bare NW (BNW) and the NW only coated with the outer shell (OSNW) and the inner shell (ISNW), which can be attributed to the optimal off-resonant absorption mode profiles due to the improved coupling between the reemitted light of the transition modes of the leak mode resonances of the Si core and the nanofocusing light from the dual shells with the graded refractive index. We found that the light absorption can be engineered via tuning the thickness and the refractive index of the inner shell, the photocurrent density is significantly enhanced by 134% (56%, 12%) in comparison with that of the BNW (OSNW, ISNW). This work advances our understanding of how to improve off-resonant absorption by applying graded dual-shell design and provides a new choice for designing high-efficiency single NW photovoltaic devices.

11.
Materials (Basel) ; 12(13)2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31277239

RESUMO

Fouling is a great problem that significantly affects the continuous operation for large-scale radio-frequency (RF) thermal plasma synthesizing nanopowders. In order to eliminate or weaken the phenomenon, numerical simulations based on FLUENT software were founded to investigate the effect of operation parameters, including feeding style of central gas and sheath gas, on plasma torches. It is shown that the tangential feeding style of central gas brings serious negative axial velocity regions, which always forces the synthesized nanopowders to "back-mix", and further leads to the fouling of the quartz tube. Moreover, it is shown that sheath gas should be tangentially fed into the plasma reactor to further eliminate the gas stream's back-mixing. However, when this feeding style is applied, although the negative axial velocity region is decreased, the plasma gas and kinetic energy of the vapor phase near the wall of the plasma reactor are less and lower, respectively; as a result, that plasma flame is more difficult to be arced. A new plasma arcing method by way of feeding gun instead of torch wall was proposed and put in use. The fouling problem has been well solved and plasma arcing is well ensured, and as a result, the experiment on large-scale production of nanopowders can be carried out for 8 h without any interruption, and synthesized Si and Al2O3 nanopowders exhibit good dispersion and sphericity.

12.
Materials (Basel) ; 12(9)2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-31071982

RESUMO

Metallic nanocrystals exhibit superior properties to their bulk counterparts because of the reduced sizes, diverse morphologies, and controllable exposed crystal facets. Therefore, the fabrication of metal nanocrystals and the adjustment of their properties for different applications have attracted wide attention. One of the typical examples is the fabrication of nanocrystals encased with high-index facets, and research on their magnified catalytic activities and selections. Great accomplishment has been achieved within the field of noble metals such as Pd, Pt, Ag, and Au. However, it remains challenging in the fabrication of base metal nanocrystals such as Ni, Cu, and Co with various structures, shapes, and sizes. In this paper, the synthesis of metal nanocrystals is reviewed. An introduction is briefly given to the metal nanocrystals and the importance of synthesis, and then commonly used synthesis methods for metallic nanocrystals are summarized, followed by specific examples of metal nanocrystals including noble metals, alloys, and base metals. The synthesis of base metal nanocrystals is far from satisfactory compared to the tremendous success achieved in noble metals. Afterwards, we present a discussion on specific synthesis methods suitable for base metals, including seed-mediated growth, ligand control, oriented attachment, chemical etching, and Oswald ripening, based on the comprehensive consideration of thermodynamics, kinetics, and physical restrictions. At the end, conclusions are drawn through the prospect of the future development direction.

13.
Eur J Med Chem ; 162: 396-406, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30453247

RESUMO

Hybridization of different pharmacophores from various bioactive substances into a single molecule is the potential weapon to prevent the drug resistance since this strategy can provide new leads with complimentary activities and/or multiple pharmacological targets. Fluoroquinolone and isatin are common pharmacophores, and their derivatives possess various biological activities. Obviously, hybridization of these two pharmacophores into one molecule may result in novel candidates with broader spectrum, higher efficiency, lower toxicity as well as multiple mechanisms of action. Therefore, fluoroquinolone-isatin hybrids have the potential for clinical deployment in the control and eradication of various diseases. This review covers the recent advances of fluoroquinolone-isatin hybrids as potential anti-bacterial, anti-tubercular, anti-viral and anti-cancer agents. The structure-activity relationship is also discussed to pave the way for the further rational development of this kind of hybrids.


Assuntos
Anti-Infecciosos/química , Fluoroquinolonas/química , Isatina/química , Antibacterianos , Anti-Infecciosos/farmacologia , Antineoplásicos , Antituberculosos , Antivirais , Fluoroquinolonas/uso terapêutico , Humanos , Isatina/uso terapêutico , Relação Estrutura-Atividade
14.
Eur J Med Chem ; 162: 266-276, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30448416

RESUMO

Benzofuran is a fundamental structural unit in a variety of biologically active natural products, and its derivatives display various biological properties. Some benzofuran derivatives possess unique anti-tubercular and anti-bacterial action mechanism, and exhibit excellent in vitro and in vivo activities against both drug-sensitive and drug-resistant pathogens. Moreover, several benzofuran derivatives have already used in clinics for the treatment of various diseases. Thus, benzofuran is a useful pharmacophore to develop new anti-tubercular and anti-bacterial drugs. This review covers the recent advances of benzofuran derivatives as potential anti-tubercular and anti-bacterial agents, and the structure-activity relationship is also discussed to pave the way for the further rational development of this kind of derivatives.


Assuntos
Antibacterianos/química , Antituberculosos/química , Benzofuranos/uso terapêutico , Humanos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA