Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(20): e202402697, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38433608

RESUMO

Molecules with nonplanar architectures are highly desirable due to their unique topological structures and functions. We report here the synthesis of two molecular containers (1 ⋅ 3Br- and 1 ⋅ 3Cl-), which utilize intramolecular cation-π interactions to enforce macrocylic arrangements and exhibit high binding affinity and luminescent properties. Remarkably, the geometry of the cation-π interaction can be flexibly tailored to achieve a precise ring arrangement, irrespective of the angle of the noncovalent bonds. Additionally, the C-H⋅⋅⋅Br- hydrogen bonds within the container are also conducive to stabilizing the bowl-shaped conformation. These bowl-shaped conformations were confirmed both in solution through NMR spectroscopy and in the solid state by X-ray studies. 1 ⋅ 3Br- shows high binding affinity and selectivity: F->Cl-, through C-H⋅⋅⋅X- (X=F, Cl) hydrogen bonds. Additionally, these containers exhibited blue fluorescence in solution and yellow room-temperature phosphorescence (RTP) in the solid state. Our findings illustrate the utility of cation-π interactions in designing functional molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA