Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 39(9): 801-806, 2023 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-37732575

RESUMO

Objective To investigate the effect of salidroside on intestinal mucosal immune status in rats under compound stress of hypoxia and training (HTCS) and the mechanism. Methods SD rats were randomly divided into HTCS model group (model), placebo group (placebo) and salidroside group (salidro). Model group received no intervention, and placebo and salidro group received intraperitoneal injection of normal saline and salidroside, respectively. Then, ileum tissue of rats were collected and the intestinal damage was assayed by HE staining and Chiu scores. Intestinal permeability indices, including serum D-diamine oxidase (DAO), D-lactic acid (DLA) and endotoxin (END) and secretory immunoglobulin A (sIgA) of intestinal tissue were detected by ELISA. T lymphocyte subsets of intestinal tissue were detected by flow cytometry. Expression of tight junction molecules, including ZO-1, Claudin-3, occluding, were detected by PCR and western blot. Activation of TLR4/NF-κB signaling pathway was detected by Western blot analysis. Results Compared with model group and placebo group, salidro group had the decreased intestinal mucosal injury and low Chiu score, and the level of intestinal permeability indices including serum DAO, DLA and END fell off. CD4+ T cell percentage, CD4+/CD8+ ratio and sIgA level were went up, while CD8+ T cell percentage was went down. mRNA and the level of protein expressions of ZO-1, claudin-3 and occludin increased, while activation of TLR4/NF-κB signaling pathway was inhibited. Conclusion Salidroside can alleviate the intestinal barrier injury and improve intestinal mucosal immune status of rats under compound stress of hypoxia and training via inhibiting TLR4/NF-κB signalling pathway.


Assuntos
NF-kappa B , Receptor 4 Toll-Like , Animais , Ratos , Ratos Sprague-Dawley , Receptor 4 Toll-Like/genética , Claudina-3 , Hipóxia , Imunoglobulina A Secretora , Transdução de Sinais
2.
Heliyon ; 9(2): e13204, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36747515

RESUMO

Objectives: Recent studies have demonstrated maternally expressed gene 3 (MEG3) as a tumor suppressor across multiple malignancies. Meanwhile, the role of MEG3 in ovarian cancer needs further investigation. We aim to study the effects of MEG3 on angiogenesis in ovarian cancer and the underlying mechanisms. Methods: The transcript levels of MEG3 in ovarian cancer samples from the GEPIA database were analyzed and compared to those in normal samples. The effect of MEG3 on the tube formation ability was quantified in ovarian carcinoma-derived microvascular endothelial cells (ODMECs). Through sequence analysis, we identified miR-376a as a major candidate to bind to MEG3. A MEG3-miR-376a binding site was identified via genetic modulation methods. RAS p21 protein activator 1 (RASA1) was screened as a middle player to bridge the role of miR-376a and angiogenesis. The regulation between miR-376a and RASA1 was confirmed via a dual-luciferase reporter assay. Finally, the competition was explored between Y-box binding protein 1 (YBX1) and miR-376a in binding to MEG3. Results: MEG3 was significantly downregulated in ODMECs compared with normal ovarian endothelial cells. Overexpression of MEG3 led to reduced tube formation of ODMECs. The MS2 hairpin assay showed that MEG3 acted as a platform to sponge miR-376a. RASA1, a key suppressor of tube formation, was directly targeted by miR-376a. Further, MEG3 suppressed angiogenesis through the miR-376a/RASA1 axis in ODMECs. Finally, YBX1 and miR-376a were competitively bound to MEG3. Conclusion: This study uncovered a novel mechanism that MEG3 sponged miRNA-376a and YBX1 to regulate the expression of RASA1 and exert an effect on the angiogenesis of ovarian cancer.

3.
NPJ Breast Cancer ; 8(1): 115, 2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36309503

RESUMO

Resistance to human epidermal growth factor receptor 2 (HER2)-targeted therapy (trastuzumab), cancer stem cell (CSC)-like properties and multiple chemoresistance often concur and intersect in breast cancer, but molecular links that may serve as effective therapeutic targets remain largely unknown. Here, we identified the long noncoding RNA, LINC00589 as a key regulatory node for concurrent intervention of these processes in breast cancer cells in vitro and in vivo. We demonstrated that the expression of LINC00589 is clinically valuable as an independent prognostic factor for discriminating trastuzumab responders. Mechanistically, LINC00589 serves as a ceRNA platform that simultaneously sponges miR-100 and miR-452 and relieves their repression of tumor suppressors, including discs large homolog 5 (DLG5) and PR/SET domain 16 (PRDM16, a transcription suppressor of mucin4), thereby exerting multiple cancer inhibitory functions and counteracting drug resistance. Collectively, our results disclose two LINC00589-initiated ceRNA networks, the LINC00589-miR-100-DLG5 and LINC00589-miR-452-PRDM16- mucin4 axes, which regulate trastuzumab resistance, CSC-like properties and multiple chemoresistance of breast cancer, thus providing potential diagnostic and prognostic markers and therapeutic targets for HER2-positive breast cancer.

4.
Front Oncol ; 12: 824258, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251990

RESUMO

Altered expression levels of the proteins that regulate N6-methyladenosine (m6A) RNA methylation, including methyltransferase-like 14 (METTL14), are associated with cancer development. Based on our analysis of m6A methylation regulators using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets, we focused on the regulatory role of METTL14 in ovarian cancer. We performed bioinformatics and survival analyses with these datasets and also used METTL14-overexpressing SKOV-3 ovarian cancer cells for in vitro studies. Trophinin associated protein (TROAP) siRNA and treatment with or without actinomycin D was used in the cells for qRT-PCR, western blot, cDNA microarray, cell viability, colony formation, luciferase gene reporter, methylated RNA immunoprecipitation (MeRIP)-qPCR, total RNA methylation, and RNA stability assays. Additionally, ovarian cancer and normal tissue samples were analyzed by immunohistochemistry, qRT-PCR, and western blot assays. The TCGA and GEO data confirmed copy number variations (CNVs) of these m6A RNA methylation regulators in ovarian cancer tissues. Furthermore, reduced METTL14 expression was associated with alterations in CNVs as well as poor patient survival in ovarian cancer. Moreover, the METTL14 and m6A RNA methylation levels were both significantly reduced in ovarian cancer tissues than in normal tissues. Restoration of METTL14 expression suppresses ovarian cancer cell proliferation by inhibition of TROAP expression. Further in vivo and in vitro experiments confirmed that METTL14 is a negative regulator of ovarian cancer cell proliferation via TROAP expression and that m6A RNA methylation regulates TROAP mRNA stability. In conclusion, METTL14 overexpression decreased ovarian cancer proliferation by inhibition of TROAP expression via an m6A RNA methylation-dependent mechanism.

5.
Front Oncol ; 11: 746266, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34650929

RESUMO

Inhibitors of histone deacetylases (HDACi) have shown promising effects in preclinical applications for the treatment of many diseases. Confusedly though, the effects of the HDACi trichostatin A (TSA) on angiogenesis are variable among different diseases. This study investigated the direct effects of TSA on endothelial cells, which plays essential roles in angiogenesis and the underlying molecular events. TSA reduced the viability of human umbilical vein endothelial cells (HUVECs), in which proliferation-related genes including BIRC5, CKS1B, and NDC80 were found to be involved. Furthermore, signal transducer and activator of transcription 5 A (STAT5A) was demonstrated to be reduced by TSA and to mediate TSA-induced downregulation of BIRC5, CKS1B, and NDC80 and HUVEC proliferation. Mechanistically, data showed that STAT5A directly bound to the promoters of BIRC5, CKS1B, and NDC80 and activated their transcription through special DNA sequence sites. Finally, the TSA-STAT5A-BIRC5, CKS1B, and NDC80 axis also worked in a cancerous endothelial cell angiogenesis model. The results of this study revealed novel mechanisms underlying the effects of TSA on endothelial cells and provided insights for angiogenesis-associated diseases.

6.
Sci Adv ; 7(9)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33627425

RESUMO

Mechanical stimuli on cells and mechanotransduction are essential in many biological and pathological processes. Glucocorticoid is an important hormone, roles, and mechanisms of which in cellular mechanotransduction remain unknown. Here, we report that glucocorticoid counteracted cellular mechanoresponses dependently on a novel long noncoding RNA (lncRNA), LINC01569 Further, LINC01569 mediated glucocorticoid effects on mechanotransduction by destabilizing messenger RNA (mRNA) of mechanosensors including early growth response protein 1 (EGR1), Cbp/P300-interacting transactivator 2 (CITED2), and bone morphogenic protein 7 (BMP7) in glucocorticoid receptor-mediated mRNA decay (GMD) manner. Mechanistically, LINC01569 directly bound to the GMD factor Y-box-binding protein 1 (YBX1). Then, the LINC01569-YBX1 complex was guided to the mRNAs of EGR1, CITED2, and BMP7 through specific LINC01569-mRNA interaction, thereby contributing to the successful assembly of GMD complex and triggering GMD. Our results uncovered roles of glucocorticoid in cellular mechanotransduction and novel lncRNA-dependent GMD machinery and provided potential strategy for early intervention in mechanical disorder-associated diseases.


Assuntos
RNA Longo não Codificante , Receptores de Glucocorticoides , Glucocorticoides/farmacologia , Mecanotransdução Celular , Estabilidade de RNA , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
7.
Biochem Biophys Res Commun ; 496(4): 1308-1313, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29408336

RESUMO

Breast cancer resistance to the monoclonal erbB2/HER2 antibody trastuzumab (or herceptin) has become a significant obstacle in clinical targeted therapy of HER2-positive breast cancer. Previous research demonstrated that such drug resistance may be related to dysregulation of miRNA expression. Here, we found that knockdown of the long non-coding RNA, urothelial cancer associated 1 (UCA1), can promote the sensitivity of human breast cancer cells to trastuzumab. Mechanistically, UCA1 knockdown upregulated miR-18a and promoted miR-18a repression of Yes-associated protein 1 (YAP1). A luciferase reporter assay confirmed the association of miR-18a with wild-type UCA1 but not with UCA1 mutated at the predicted miR-18a-binding site. The direct targeting of YAP1 by miR-18a was verified by the observation that miR-18a mimic suppressed luciferase expression from a construct containing the YAP1 3' untranslated region. Meanwhile, reciprocal repression of UCA1 and miR-18a were found to be Argonaute 2-dependent. Knockdown of YAP1 recapitulated the effect of UCA1 silencing by reducing the viability of trastuzumab-treated breast cancer cells, whereas inhibition of miR-18a abrogated UCA1 knockdown-induced improvement of trastuzumab sensitivity in breast cancer cells. These findings demonstrate that the UCA1/miR-18a/YAP1 axis plays an important role in regulating the sensitivity of breast cancer cells to trastuzumab, which has implications for the development of novel approaches to improving breast cancer responses to targeted therapy.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Trastuzumab/administração & dosagem , Antineoplásicos Imunológicos/administração & dosagem , Apoptose/efeitos dos fármacos , Apoptose/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Repressão Epigenética/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Inativação Gênica/efeitos dos fármacos , Humanos , Resultado do Tratamento
8.
Oncotarget ; 8(39): 65800-65808, 2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-29029473

RESUMO

Loss of key components that form cell-cell adherens junctions, such as α-catenin, triggers severe epidermal hyperproliferation. However, the underlying molecular mechanisms remain largely unknown. We report here that neuroblastoma breakpoint family (NBPF) genes are upregulated and that NBPF7 specifically promotes cellular proliferation of α-catenin-silenced HaCaT cells through functional linkage with the NF-κB pathway. Genome-wide profiling of HaCaT cells shows that NBPF genes are upregulated following α-catenin knockdown. Data from western blot analyses are consistent with the activation of the NF-κB pathway as well as increased expression of NBPF7 by α-catenin knockdown. Co-immunoprecipitation assays indicate that NBPF7 could be detected in endogenous activated NF-κB immunoprecipitates. Immunoflurence analyses demonstrate that NBPF7 co-localizes with activated NF-κB in the nucleus after α-catenin silencing. Moreover, inhibition of NBPF7 decreases the proliferation of HaCaT cells and abolishes the enhanced proliferation associated with α-catenin knockdown in HaCaT cells. These results indicate that NBPF7 plays a key role in the α-catenin signaling pathway that regulates cell proliferation of keratinocytes. Our findings suggest that the classical NF-κB pathway plays a critical role in cellular proliferation and that NBPF7 is a functional mediator for α-catenin in the regulation of keratinocyte growth.

9.
Oncotarget ; 8(35): 58072-58085, 2017 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-28938538

RESUMO

Rg1 is a predominant protopanaxatriol-type of ginsenoside found in Panax ginseng, and it has been shown to have anti-cancer effects in multiple types of cancer cells. However, Rg1 also induces the expression of proangiogenic factors, such as vascular endothelial growth factor (VEGF-A), in endothelial cells. Unfortunately, angiogenesis positively correlates with cancer development. In this study, we identified RUNX2 as a regulator of ginsenoside Rg1-induced angiogenesis for the first time. We found that RUNX2 was directly targeted and regulated by miR-23a. Additionally, miR-23a was shown to inhibit angiogenesis in both human umbilical vein endothelial cells (HUVECs) and in zebrafish. Furthermore, a decrease in RUNX2 expression resulted in translational repression of VEGF-A in HUVECs. Taken together, this study identified a MiR-23a/RUNX2/VEGF-A pathway in angiogenesis and shed light on the molecular mechanism of Rg1-induced angiogenesis. Thus, RUNX2 might be a potential therapeutic target in Rg1-mediated angiogenesis in cancer.

10.
Am J Transl Res ; 8(8): 3460-70, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27648136

RESUMO

Keloid, a skin benign tumor, is characterized by overgrowth of fibroblasts and the excessive deposition of extracellular matrix in wounded skin. Peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist was recently evaluated to inhibit fibrosis. This study explored the underlying mechanisms. Fibroblasts isolated from 25 keloid patients (KFs) and fibroblasts isolated from healthy controls (NSFBs) were also subjected to treatment with PPAR-γ agonist troglitazone and antagonist GW9662 or for transfection with miR-92 mimics or inhibitor, Axl siRNA, and miR-92b or Axl promoter constructs, as well as being subjected to qRT-PCR, ELISA, Western blot, protein array, luciferase, and ChIP assays. The data demonstrated that TGF-ß1 and Axl proteins were significantly elevated in samples from keloid patients, while troglitazone treatment significantly reduced levels of TGF-ß1 and Axl mRNA and proteins in KFs. Moreover, knockdown of Axl expression reduced expression of TGF-ß1 and its pathway genes (such as α-SMA and Snail). PPAR-γ regulation of Axl expression was through transcriptional activation of miR-92b. miR-92b expression downregulated Axl expression at both mRNA and protein levels, whereas GW9662 completely reversed the inhibitory effects of miR-92b mimics on Axl expression. Gene ontology analysis of miR-92b targeting genes showed that TGF-ß and Axl were both potential targets of miR-92b, as confirmed by luciferase assay. These findings demonstrated that PPAR-γ-induced miR-92b expression inhibited Axl expression and in turn reduced expression of TGF-ß1 and the downstream genes in KFs, suggesting that targeting of this novel gene pathway may be useful for therapeutic control of fibrosis or keloid.

11.
Am J Cancer Res ; 6(6): 1358-70, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27429849

RESUMO

A keloid is a benign skin tumor formed by an overgrowth of granulation tissue in affected patients. Peroxisome proliferator-activated receptor-γ (PPAR-γ) agonists were reported to be able to regulate extracellular matrix production in human dermal fibroblasts. This study explored the underlying molecular mechanism of PPAR-γ agonist troglitazone treatment for fibroblasts obtained from keloid patients. The data revealed that troglitazone treatment of keloid fibroblasts (KFs) downregulated the expression of early growth response-1 (Egr1) and collagen-1 (Col1). Level of Egr1 were closely associated with KF-induced fibrosis. The miRNA profiling data revealed that miR-543 was transcriptionally activated after troglitazone treatment. Bioinformatic analysis and experimental data showed that miR-543 was able to target Egr1. ELISA data confirmed that Col1 protein in the supernatant were modulated by the feedback regulatory axis of PPAR-γ agonist-induced miR-543 to inhibit Egr1 expression, whereas PPAR-γ antagonist treatment abolished such effect on Col1 suppression in KFs. This study demonstrated that the PPAR-γ agonist-mediated miR-543 and Egr1 signaling plays an important role in the suppression of collagen synthesis in KFs. Future in vivo studies are needed to confirm these in vitro data.

12.
Sci Rep ; 6: 25272, 2016 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-27121396

RESUMO

Recent microRNA expression profiling studies have documented an up-regulation of miR-146a in several angiogenesis models. However, the underlying molecular mechanism of miR-146a in the angiogenic activity of endothelial cells has not been clearly elucidated. The present study was aimed to evaluate whether miR-146a promotes angiogenesis in HUVECs by increasing FGFBP1 expression via directly targeting CREB3L1. miR-146a was over expressed in HUVECs via lentiviral-miR-146a. Expression profiling analysis found miR-146a over expression resulted in up-regulation of angiogenesis and cytokine activity associated genes including FGF2. Further a combination of bioinformatics and experimental analyses demonstrated the CREB3L1 as a bona fide functional target of miR-146a during angiogenesis. Moreover, CREB3L1 inhibited luciferase expression from FGFBP1 promoter containing only CRE elements. Furthermore, CREB3L1 inhibited FGFBP1 expression by binding to two CRE-like sites located at approximately -1780-1777 and -868-865 bp relative to the FGFBP1 transcription start site. Additionally, ectopic expression of CREB3L1 decreased miR-146a-induced FGF2 secretion. These findings indicate that the miR-146a-CREB3L1-FGFBP1 signaling axis plays an important role in the regulation of angiogenesis in HUVECs and provides a potential therapeutic target for anti-angiogenic therapeutics.


Assuntos
Proteínas de Transporte/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Células Endoteliais da Veia Umbilical Humana/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , MicroRNAs/metabolismo , Neovascularização Fisiológica , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais , Regulação para Cima , Citocinas/metabolismo , Humanos
13.
Sci Rep ; 6: 24728, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27090737

RESUMO

Abnormally high activation of transforming growth factor-ß (TGF-ß) signaling has been demonstrated to be involved in the initiation and progression of keloids. However, the functional role of long non-coding RNA (lncRNA)-activated by TGF-ß (lncRNA-ATB) in keloids has not been documented. Here we investigated the role of lncRNA-ATB in the autocrine secretion of TGF-ß in keloid fibroblasts (KFs) and explored the underlying molecular mechanism. Using immunohistochemistry and quantitative RT-PCR analysis, we showed that lncRNA-ATB and ZNF217, a transcriptional activator of TGF-ß, were overexpressed and miR-200c, which targets ZNF217, was under-expressed in keloid tissue and keloid fibroblasts. Through gain- and loss-of-function studies, we demonstrated that knockdown of lncRNA-ATB decreased autocrine secretion of TGF-ß2 and ZNF217 expression but upregulated expression of miR-200c in KFs. Stable downregulation of ZNF217 expression decreased the autocrine secretion of TGF-ß2. miR-200c was endogenously associated with lncRNA-ATB, and inhibition of miR-200c overcame the decrease in ZNF217 expression in KFs. Taken together, these findings indicate that lncRNA-ATB governs the autocrine secretion of TGF-ß2 in KFs, at least in part, by downregulating the expression level of ZNF217 via miR-200c, suggesting a signaling axis consisting of lncRNA-ATB/miR-200c/ZNF217/TGF-ß2. These findings may provide potential biomarkers and targets for novel diagnostic and therapeutic approaches for keloids.


Assuntos
Queloide/metabolismo , MicroRNAs/genética , RNA Longo não Codificante/genética , Transativadores/genética , Fator de Crescimento Transformador beta2/metabolismo , Biomarcadores , Regulação para Baixo , Fibroblastos/metabolismo , Técnicas de Silenciamento de Genes , Humanos
14.
FEBS Lett ; 589(3): 380-9, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25554417

RESUMO

Urokinase type plasminogen activator (uPA) and plasminogen activator inhibitor-1 (PAI-1) have been proposed to play key roles in extracellular matrix (ECM) deposition in hypertrophic scars (HS). Here, we found that in HS fibroblasts (HFs) miR-181c and miR-10a were differentially-expressed and targeted uPA and PAI-1, respectively. The production of Type 1 collagen (Col1) was inhibited by miR-181c knockdown or miR-10a overexpression in HFs, and this resulted in increased levels of metalloproteinase 1 (MMP1). These results suggest that the miR-181c-uPA and miR-10a-PAI-1 regulatory pathways have an integral role in HS pathogenesis.


Assuntos
Cicatriz Hipertrófica/genética , Colágeno Tipo I/biossíntese , MicroRNAs/biossíntese , Inibidor 1 de Ativador de Plasminogênio/genética , Ativador de Plasminogênio Tipo Uroquinase/genética , Adolescente , Adulto , Criança , Cicatriz Hipertrófica/patologia , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica , Humanos , Masculino , Metaloproteinase 1 da Matriz/biossíntese , Metaloproteinase 1 da Matriz/genética , MicroRNAs/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Adulto Jovem
15.
PLoS One ; 9(5): e97114, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24817011

RESUMO

BACKGROUND: As an important oncogenic miRNA, microRNA-21 (miR-21) is associated with various malignant diseases. However, the precise biological function of miR-21 and its molecular mechanism in hypertrophic scar fibroblast cells has not been fully elucidated. METHODOLOGY/PRINCIPAL FINDINGS: Quantitative Real-Time PCR (qRT-PCR) analysis revealed significant upregulation of miR-21 in hypertrophic scar fibroblast cells compared with that in normal skin fibroblast cells. The effects of miR-21 were then assessed in MTT and apoptosis assays through in vitro transfection with a miR-21 mimic or inhibitor. Next, PTEN (phosphatase and tensin homologue deleted on chromosome ten) was identified as a target gene of miR-21 in hypertrophic scar fibroblast cells. Furthermore, Western-blot and qRT-PCR analyses revealed that miR-21 increased the expression of human telomerase reverse transcriptase (hTERT) via the PTEN/PI3K/AKT pathway. Introduction of PTEN cDNA led to a remarkable depletion of hTERT and PI3K/AKT at the protein level as well as inhibition of miR-21-induced proliferation. In addition, Western-blot and qRT-PCR analyses confirmed that hTERT was the downstream target of PTEN. Finally, miR-21 and PTEN RNA expression levels in hypertrophic scar tissue samples were examined. Immunohistochemistry assays revealed an inverse correlation between PTEN and hTERT levels in high miR-21 RNA expressing-hypertrophic scar tissues. CONCLUSIONS/SIGNIFICANCE: These data indicate that miR-21 regulates hTERT expression via the PTEN/PI3K/AKT signaling pathway by directly targeting PTEN, therefore controlling hypertrophic scar fibroblast cell growth. MiR-21 may be a potential novel molecular target for the treatment of hypertrophic scarring.


Assuntos
Cicatriz Hipertrófica/metabolismo , Fibroblastos/metabolismo , Regulação da Expressão Gênica/genética , MicroRNAs/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Telomerase/metabolismo , Western Blotting , Células Cultivadas , Humanos , Imuno-Histoquímica , Luciferases , MicroRNAs/genética , Oligonucleotídeos/genética , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Sais de Tetrazólio , Tiazóis
16.
Int J Cancer ; 135(6): 1356-68, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24615544

RESUMO

Resistance to trastuzumab and concomitantly distal metastasis are leading causes of mortality in HER2-positive breast cancers, the molecular basis of which remains largely unknown. Here, we generated trastuzumab-resistant breast cancer cells with increased tumorigenicity and invasiveness compared with parental cells, and observed robust epithelial-mesenchymal transition (EMT) and consistently elevated TGF-ß signaling in these cells. MiR-200c, which was the most significantly downregulated miRNA in trastuzumab-resistant cells, restored trastuzumab sensitivity and suppressed invasion of breast cancer cells by concurrently targeting ZNF217, a transcriptional activator of TGF-ß, and ZEB1, a known mediator of TGF-ß signaling. Given the reported backward inhibition of miR-200c by ZEB1, ZNF217 also exerts a feedback suppression of miR-200c via TGF-ß/ZEB1 signaling. Restoration of miR-200c, silencing of ZEB1 or ZNF217 or blockade of TGF-ß signaling increased trastuzumab sensitivity and suppressed invasiveness of breast cancer cells. Therefore, our study unraveled nested regulatory circuits of miR-200c/ZEB1 and miR-200c/ZNF217/TGF-ß/ZEB1 in synergistically promoting trastuzumab resistance and metastasis of breast cancer cells. These findings provide novel insights into the common role of EMT and related molecular machinery in mediating the malignant phenotypes of breast cancers.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Proteínas de Homeodomínio/metabolismo , MicroRNAs/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Feminino , Proteínas de Homeodomínio/genética , Humanos , Camundongos Nus , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Metástase Neoplásica , Transativadores/genética , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta/antagonistas & inibidores , Trastuzumab , Ensaios Antitumorais Modelo de Xenoenxerto , Homeobox 1 de Ligação a E-box em Dedo de Zinco
17.
BMC Cancer ; 14: 134, 2014 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-24571711

RESUMO

BACKGROUND: Resistance to humanized monoclonal erbB2/HER2 antibody, trastuzumab (Herceptin), has become a pivotal obstacle for targeted therapy of HER2-positive breast cancers. The activation of alternative growth factor receptors, in particular, the insulin-like growth factor 1 receptor (IGF1R), represents a common feature of trastuzumab-refractory cells; however, the underlying mechanism remains elusive. METHODS: Trastuzumab-resistant breast cancer SKBr-3 cells were generated by long-term in vitro culture of SKBr-3 cells in the presence of trastuzumab. Among the differentially expressed microRNAs (miRNAs) screened by microarray analysis, candidate miRNA(s) predicted to target IGF1R was studied for its role in conferring trastuzumab resistance. The mechanism underlying decreased expression of IGF1R-targeted miRNA in refractory cells was also addressed. RESULTS: miR-375, which was downregulated and predicted to target IGF1R in trastuzumab-resistant HER2-positive breast cancer cells, could indeed inhibit the cellular luciferase activity in a reporter construct containing the 3'-UTR of IGF1R. Overexpression of miR-375 restored the sensitivity of cells to trastuzumab, while inhibition of miR-375 conferred trastuzumab resistance on HER2-positive breast cancer cells. Blockade of DNA methylation and histone deacetylation restored the expression of miR-375 in trastuzumab-resistant cells. A reverse correlation between the levels of miR-375 and IGF1R was validated in clinical breast cancers. CONCLUSIONS: Epigenetic silencing of miR-375 causes the upregulation of IGF1R, which at least partially underlies trastuzumab resistance of breast cancer cells. Our study has implications for miR-375 as a potential target in combination with trastuzumab for treating HER2-positive breast cancers.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Epigênese Genética , Inativação Gênica , MicroRNAs/genética , Receptor ErbB-2/metabolismo , Receptor IGF Tipo 1/genética , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , MicroRNAs/química , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor IGF Tipo 1/química , Transdução de Sinais , Trastuzumab , Ensaios Antitumorais Modelo de Xenoenxerto
18.
BMB Rep ; 47(5): 268-73, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24286315

RESUMO

HER2-overexpressing breast cancers are characterized by frequent distant metastasis and often develop resistance after short-term effective treatment with the monoclonal antibody drug, trastuzumab. Here, we found that the oncogenic miRNA, miR-221, inhibited apoptosis, induced trastuzumab resistance and promoted metastasis of HER2-positive breast cancers. The tumor suppressor PTEN was identified as a miR-221 target; overexpression of PTEN abrogated the aforementioned miR-221-induced malignant phenotypes of the cells. These findings indicate that miR-221 may promote trastuzumab resistance and metastasis of HER2-positive breast cancers by targeting PTEN, suggesting its role as a potential biomarker for progression and poor prognosis, and as a novel target for trastuzumab-combined treatment of breast cancers.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , MicroRNAs/genética , PTEN Fosfo-Hidrolase/genética , Receptor ErbB-2/metabolismo , Antineoplásicos/uso terapêutico , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , MicroRNAs/metabolismo , Invasividade Neoplásica/genética , Metástase Neoplásica/genética , PTEN Fosfo-Hidrolase/antagonistas & inibidores , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Receptor ErbB-2/genética , Trastuzumab
19.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 25(10): 866-9, 2009 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-19811728

RESUMO

AIM: To construct the replicative deficient adenovirus Ad-Runx3 expressing Runx3, and to express it in U251 malignant glioblastoma cells. METHODS: The runx3 gene with a flag tag was amplified by PCR using pCMV5-AML2 as a template, and was confirmed by DNA sequencing. The adenovirus shuttle vector pShuttle-CMV-Runx3 was constructed by introducing runx3 DNA fragment into the sites of Kpn I and Xho I of pShuttle-CMV vector. This recombinant plasmid was linearized by PmeI and electronically transfected into BJ5183 cells to get the recombinant adenovirus vector Ad-Runx3. The recombinant adenovirus expressing Runx3 was infected into U251 malignant glioblastoma cells. The expression of exogenous Runx3 was observed by immonoblotting and its localization was detected by immunostaining using anti-Flag tag antibody. RESULTS: The recombinant adenovirus expressing Runx3 with a Flag tag was constructed and infected into U251 glioblastoma cells. The exogenous Runx3 protein was detected only in the nuclei. CONCLUSION: The recombinant adenovirus expressing Runx3 with a Flag tag is constructed successfully, and the Runx3 protein expressed in the nuclei of infected cells. The study laid a foundation for further research of the function of Runx3 in gliocarcinogenesis.


Assuntos
Adenoviridae/genética , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Glioblastoma/patologia , Animais , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Clonagem Molecular , Subunidade alfa 3 de Fator de Ligação ao Core/biossíntese , Subunidade alfa 3 de Fator de Ligação ao Core/isolamento & purificação , Expressão Gênica , Humanos , Camundongos , Plasmídeos/genética , Transporte Proteico , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA