Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 3171, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264007

RESUMO

Cu-based nanocatalysts are the cornerstone of various industrial catalytic processes. Synergistically strengthening the catalytic stability and activity of Cu-based nanocatalysts is an ongoing challenge. Herein, the high-entropy principle is applied to modify the structure of Cu-based nanocatalysts, and a PVP templated method is invented for generally synthesizing six-eleven dissimilar elements as high-entropy two-dimensional (2D) materials. Taking 2D Cu2Zn1Al0.5Ce5Zr0.5Ox as an example, the high-entropy structure not only enhances the sintering resistance from 400 °C to 800 °C but also improves its CO2 hydrogenation activity to a pure CO production rate of 417.2 mmol g-1 h-1 at 500 °C, 4 times higher than that of reported advanced catalysts. When 2D Cu2Zn1Al0.5Ce5Zr0.5Ox are applied to the photothermal CO2 hydrogenation, it exhibits a record photochemical energy conversion efficiency of 36.2%, with a CO generation rate of 248.5 mmol g-1 h-1 and 571 L of CO yield under ambient sunlight irradiation. The high-entropy 2D materials provide a new route to simultaneously achieve catalytic stability and activity, greatly expanding the application boundaries of photothermal catalysis.

2.
ACS Nano ; 17(3): 1725-1738, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36734978

RESUMO

Converting carbon dioxide (CO2) into value-added fuels or chemicals through photothermal catalytic CO2 hydrogenation is a promising approach to alleviate the energy shortage and global warming. Understanding the nanostructured material strategies in the photothermal catalytic CO2 hydrogenation process is vital for designing photothermal devices and catalysts and maximizing the photothermal CO2 hydrogenation performance. In this Perspective, we first describe several essential nanomaterial design concepts to enhance sunlight absorption and utilization in photothermal CO2 hydrogenation. Subsequently, we review the latest progress in photothermal CO2 hydrogenation into C1 (e.g., CO, CH4, and CH3OH) and multicarbon hydrocarbon (C2+) products. Finally, the relevant challenges and opportunities in this exciting research realm are discussed. This perspective provides a comprehensive understanding for the light-heat synergy over nanomaterials and instruction for rational photothermal catalyst design for CO2 utilization.

3.
Nat Commun ; 13(1): 776, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35140217

RESUMO

Solar-heating catalysis has the potential to realize zero artificial energy consumption, which is restricted by the low ambient solar heating temperatures of photothermal materials. Here, we propose the concept of using heterostructures of black photothermal materials (such as Bi2Te3) and infrared insulating materials (Cu) to elevate solar heating temperatures. Consequently, the heterostructure of Bi2Te3 and Cu (Bi2Te3/Cu) increases the 1 sun-heating temperature of Bi2Te3 from 93 °C to 317 °C by achieving the synergy of 89% solar absorption and 5% infrared radiation. This strategy is applicable for various black photothermal materials to raise the 1 sun-heating temperatures of Ti2O3, Cu2Se, and Cu2S to 295 °C, 271 °C, and 248 °C, respectively. The Bi2Te3/Cu-based device is able to heat CuOx/ZnO/Al2O3 nanosheets to 305 °C under 1 sun irradiation, and this system shows a 1 sun-driven hydrogen production rate of 310 mmol g-1 h-1 from methanol and water, at least 6 times greater than that of all solar-driven systems to date, with 30.1% solar-to-hydrogen efficiency and 20-day operating stability. Furthermore, this system is enlarged to 6 m2 to generate 23.27 m3/day of hydrogen under outdoor sunlight irradiation in the spring, revealing its potential for industrial manufacture.

4.
Cancer Biomark ; 34(2): 297-307, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34957997

RESUMO

Drug resistance is a critical factor responsible for the recurrence of non-small cell lung cancer (NSCLC). Previous studies suggest that curcumin acts as a chemosensitizer and radiosensitizer in human malignancies, but the underlying mechanism remains elusive. In the present study, we explored how curcumin regulates the expression of miR-142-5p and sensitizes NSCLC cells to crizotinib. We found that miR-142-5p is significantly downregulated in NSCLC tissue samples and cell lines. Curcumin could increase crizotinib cytotoxicity by epigenetically restoring the expression of miR-142-5p. Furthermore, curcumin treatment suppressed the expression of DNA methylation-related enzymes, including DNMT1, DNMT3A, and DNMT3B, in NSCLC cells. In addition, the upregulation of miR-142-5p expression increased crizotinib cytotoxicity and induced apoptosis in tumor cells in a similar manner to that of curcumin. Strikingly, miR-142-5p overexpression suppressed crizotinib-induced autophagy in A549 and H460 cells. Mechanistically, miR-142-5p inhibited autophagy in lung cancer cells by targeting Ulk1. Overexpression of Ulk1 abrogated the miR-142-5p-induced elevation of crizotinib cytotoxicity in A549 and H460 cells. Collectively, our findings demonstrate that curcumin sensitizes NSCLC cells to crizotinib by inactivating autophagy through the regulation of miR-142-5p and its target Ulk1.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Curcumina , Neoplasias Pulmonares , MicroRNAs , Apoptose/genética , Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Crizotinibe/uso terapêutico , Curcumina/farmacologia , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MicroRNAs/genética , MicroRNAs/metabolismo
5.
iScience ; 24(2): 102056, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33537660

RESUMO

Methanol dehydrogenation is an efficient way to produce syngas with high quality. The current efficiency of sunlight-driven methanol dehydrogenation is poor, which is limited by the lack of excellent catalysts and effective methods to convert sunlight into chemicals. Here, we show that atomically substitutional Pt-doped in CeO2 nanosheets (Pts-CeO2) exhibit excellent methanol dehydrogenation activity with 500-hr level catalytic stability, 11 times higher than that of Pt nanoparticles/CeO2. Further, we introduce a photothermal conversion device to heat Pts-CeO2 up to 299°C under 1 sun irradiation owning to efficient full sunlight absorption and low heat dissipation, thus achieving an extraordinarily high methanol dehydrogenation performance with a 481.1 mmol g-1 h-1 of H2 production rate and a high solar-to-hydrogen (STH) efficiency of 32.9%. Our method represents another progress for ambient sunlight-driven stable and active methanol dehydrogenation technology.

6.
Nat Commun ; 10(1): 2359, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31142744

RESUMO

Ambient sunlight-driven CO2 methanation cannot be realized due to the temperature being less than 80 °C upon irradiation with dispersed solar energy. In this work, a selective light absorber was used to construct a photothermal system to generate a high temperature (up to 288 °C) under weak solar irradiation (1 kW m-2), and this temperature is three times higher than that in traditional photothermal catalysis systems. Moreover, ultrathin amorphous Y2O3 nanosheets with confined single nickel atoms (SA Ni/Y2O3) were synthesized, and they exhibited superior CO2 methanation activity. As a result, 80% CO2 conversion efficiency and a CH4 production rate of 7.5 L m-2 h-1 were achieved through SA Ni/Y2O3 under solar irradiation (from 0.52 to 0.7 kW m-2) when assisted by a selective light absorber, demonstrating that this system can serve as a platform for directly harnessing dispersed solar energy to convert CO2 to valuable chemicals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA