RESUMO
Whole-genome sequencing (WGS), whole-exome sequencing (WES) and array genotyping with imputation (IMP) are common strategies for assessing genetic variation and its association with medically relevant phenotypes. To date, there has been no systematic empirical assessment of the yield of these approaches when applied to hundreds of thousands of samples to enable the discovery of complex trait genetic signals. Using data for 100 complex traits from 149,195 individuals in the UK Biobank, we systematically compare the relative yield of these strategies in genetic association studies. We find that WGS and WES combined with arrays and imputation (WES + IMP) have the largest association yield. Although WGS results in an approximately fivefold increase in the total number of assayed variants over WES + IMP, the number of detected signals differed by only 1% for both single-variant and gene-based association analyses. Given that WES + IMP typically results in savings of lab and computational time and resources expended per sample, we evaluate the potential benefits of applying WES + IMP to larger samples. When we extend our WES + IMP analyses to 468,169 UK Biobank individuals, we observe an approximately fourfold increase in association signals with the threefold increase in sample size. We conclude that prioritizing WES + IMP and large sample sizes rather than contemporary short-read WGS alternatives will maximize the number of discoveries in genetic association studies.
RESUMO
Coronavirus disease 2019 (COVID-19) and influenza are respiratory illnesses caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses, respectively. Both diseases share symptoms and clinical risk factors1, but the extent to which these conditions have a common genetic etiology is unknown. This is partly because host genetic risk factors are well characterized for COVID-19 but not for influenza, with the largest published genome-wide association studies for these conditions including >2 million individuals2 and about 1,000 individuals3-6, respectively. Shared genetic risk factors could point to targets to prevent or treat both infections. Through a genetic study of 18,334 cases with a positive test for influenza and 276,295 controls, we show that published COVID-19 risk variants are not associated with influenza. Furthermore, we discovered and replicated an association between influenza infection and noncoding variants in B3GALT5 and ST6GAL1, neither of which was associated with COVID-19. In vitro small interfering RNA knockdown of ST6GAL1-an enzyme that adds sialic acid to the cell surface, which is used for viral entry-reduced influenza infectivity by 57%. These results mirror the observation that variants that downregulate ACE2, the SARS-CoV-2 receptor, protect against COVID-19 (ref. 7). Collectively, these findings highlight downregulation of key cell surface receptors used for viral entry as treatment opportunities to prevent COVID-19 and influenza.
Assuntos
COVID-19 , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Influenza Humana , SARS-CoV-2 , Humanos , Influenza Humana/genética , Influenza Humana/epidemiologia , Influenza Humana/virologia , COVID-19/genética , COVID-19/virologia , Fatores de Risco , SARS-CoV-2/genética , Masculino , Feminino , Polimorfismo de Nucleotídeo Único , Estudos de Casos e Controles , Pessoa de Meia-IdadeRESUMO
It is widely believed that the discrete breather (DB) can only be created when the nonlinearity is strong in nonlinear systems. However, we here establish that this belief is incorrect. In this work, we systemically investigate the generation of DBs induced by coupling of the defects and nonlinearity for Bose-Einstein condensates in dissipative optical lattices. The results show that, only in a clean lattice is strong nonlinearity a necessary condition for generating of DB; whereas, if the lattice has a defect, the DBs can also be discovered even in weak nonlinearity, and its generation turns out to be controllable. In addition, we further reveal a critical interval of the defect in weak nonlinearity, within which DBs can be found, while outside DBs do not exist. Furthermore, we also explore the impact of multiple defects on the generation of DBs, and analyze the underlying physical mechanisms of these interesting phenomena. The results not only have the potential to be used for more precise engineering in the DB experiments, but also suggest that the DB may be ubiquitous since the defects and dissipation are unavoidable in real physics.
RESUMO
Rare coding variants that substantially affect function provide insights into the biology of a gene1-3. However, ascertaining the frequency of such variants requires large sample sizes4-8. Here we present a catalogue of human protein-coding variation, derived from exome sequencing of 983,578 individuals across diverse populations. In total, 23% of the Regeneron Genetics Center Million Exome (RGC-ME) data come from individuals of African, East Asian, Indigenous American, Middle Eastern and South Asian ancestry. The catalogue includes more than 10.4 million missense and 1.1 million predicted loss-of-function (pLOF) variants. We identify individuals with rare biallelic pLOF variants in 4,848 genes, 1,751 of which have not been previously reported. From precise quantitative estimates of selection against heterozygous loss of function (LOF), we identify 3,988 LOF-intolerant genes, including 86 that were previously assessed as tolerant and 1,153 that lack established disease annotation. We also define regions of missense depletion at high resolution. Notably, 1,482 genes have regions that are depleted of missense variants despite being tolerant of pLOF variants. Finally, we estimate that 3% of individuals have a clinically actionable genetic variant, and that 11,773 variants reported in ClinVar with unknown significance are likely to be deleterious cryptic splice sites. To facilitate variant interpretation and genetics-informed precision medicine, we make this resource of coding variation from the RGC-ME dataset publicly accessible through a variant allele frequency browser.
Assuntos
Exoma , Variação Genética , Proteínas , Humanos , Alelos , Exoma/genética , Sequenciamento do Exoma , Frequência do Gene , Variação Genética/genética , Heterozigoto , Mutação com Perda de Função/genética , Mutação de Sentido Incorreto/genética , Fases de Leitura Aberta/genética , Proteínas/genética , Sítios de Splice de RNA/genética , Medicina de PrecisãoRESUMO
Serotonin (5-HT), an indoleamine compound, has been known to mediate many physiological responses of plants under environmental stress. The deep-seeding (≥20 cm) of maize seeds is an important cultivation strategy to ensure seedling emergence and survival under drought stress. However, the role of 5-HT in maize deep-seeding tolerance remains unexplored. Understanding the mechanisms and evaluating the optimal concentration of 5-HT in alleviating deep-seeding stress could benefit maize production. In this study, two maize inbred lines were treated with or without 5-HT at both sowing depths of 20 cm and 3 cm, respectively. The effects of different concentrations of 5-HT on the growth phenotypes, physiological metabolism, and gene expression of two maize inbred lines were examined at the sowing depths of 20 cm and 3 cm. Compared to the normal seedling depth of 3 cm, the elongation of the mesocotyl (average elongation 3.70 cm) and coleoptile (average elongation 0.58 cm), secretion of indole-3-acetic acid (IAA; average increased 3.73 and 0.63 ng g-1 FW), and hydrogen peroxide (H2O2; average increased 1.95 and 0.63 µM g-1 FW) in the mesocotyl and coleoptile were increased under 20 cm stress, with a concomitant decrease in lignin synthesis (average decreased 0.48 and 0.53 A280 g-1). Under 20 cm deep-seeding stress, the addition of 5-HT activated the expression of multiple genes of IAA biosynthesis and signal transduction, including Zm00001d049601, Zm00001d039346, Zm00001d026530, and Zm00001d049659, and it also stimulated IAA production in both the mesocotyl and coleoptile of maize seedlings. On the contrary, 5-HT suppressed the expression of genes for lignin biosynthesis (Zm00001d016471, Zm00001d005998, Zm00001d032152, and Zm00001d053554) and retarded the accumulation of H2O2 and lignin, resulting in the elongation of the mesocotyl and coleoptile of maize seedlings. A comprehensive evaluation analysis showed that the optimum concentration of 5-HT in relieving deep-seeding stress was 2.5 mg/L for both inbred lines, and 5-HT therefore could improve the seedling emergence rate and alleviate deep-seeding stress in maize seedlings. These findings could provide a novel strategy for improving maize deep-seeding tolerance, thus enhancing yield potential under drought and water stress.
Assuntos
Cotilédone , Plântula , Plântula/metabolismo , Cotilédone/metabolismo , Zea mays/metabolismo , Serotonina/metabolismo , Lignina/metabolismo , Peróxido de Hidrogênio/metabolismo , Ácidos Indolacéticos/farmacologia , Ácidos Indolacéticos/metabolismoRESUMO
We aimed to summarize the effectiveness and changing trends of reconstruction for the anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL) injuries using all-inside arthroscope technique. Between May 2013 and May 2019, 29 patients with ACL and PCL ligaments rupture were included. All the patients were male, with a mean age of 25.2±2.9 years. The mean follow-up period was 2.4±0.7 years (Range, 2-4 years). Reconstruction surgery of the ACL and PCL ligaments was performed by using autologous hamstring tendon with all-inside arthroscopy technique. The anterior and posterior drawer test, Lachman test, Pivot-shift test, stress test, IKDC score, Lysholm score, Tenger score were analyzed clinically. At the last follow-up, the symptoms were improved significantly, the anterior drawer test was normal and 1 degree in 96.6%, posterior drawer test in 89.7%, pivot shift test in 96.6%, Lachman test in 93.1%, and stress test in 93.3%, the stability was improved significant(P<0.05). The IKDC-2000 standard score was normal and near normal in 96.6%. The IKDC subjective score, Lysholm score, and Tenger scores results at the last follow-up were significantly improved when compared with those before operation ( P<0.05). The changing trends of function evaluation score in the first six months were most obviously better, especially in the third month. All-inside arthroscopy technique is an effective procedure for the ACL and PCL ligaments injuries, and the first six months (especially the third month) after the reconstruction is the key period for a successful recovery. However, there was still a significant improvement at the later stage of rehabilitation.
Assuntos
Lesões do Ligamento Cruzado Anterior , Ligamento Cruzado Posterior , Humanos , Masculino , Adulto Jovem , Adulto , Feminino , Ligamento Cruzado Posterior/cirurgia , Ligamento Cruzado Posterior/lesões , Artroscopia/métodos , Lesões do Ligamento Cruzado Anterior/cirurgia , Resultado do Tratamento , Articulação do Joelho/cirurgiaRESUMO
The Mexico City Prospective Study is a prospective cohort of more than 150,000 adults recruited two decades ago from the urban districts of Coyoacán and Iztapalapa in Mexico City1. Here we generated genotype and exome-sequencing data for all individuals and whole-genome sequencing data for 9,950 selected individuals. We describe high levels of relatedness and substantial heterogeneity in ancestry composition across individuals. Most sequenced individuals had admixed Indigenous American, European and African ancestry, with extensive admixture from Indigenous populations in central, southern and southeastern Mexico. Indigenous Mexican segments of the genome had lower levels of coding variation but an excess of homozygous loss-of-function variants compared with segments of African and European origin. We estimated ancestry-specific allele frequencies at 142 million genomic variants, with an effective sample size of 91,856 for Indigenous Mexican ancestry at exome variants, all available through a public browser. Using whole-genome sequencing, we developed an imputation reference panel that outperforms existing panels at common variants in individuals with high proportions of central, southern and southeastern Indigenous Mexican ancestry. Our work illustrates the value of genetic studies in diverse populations and provides foundational imputation and allele frequency resources for future genetic studies in Mexico and in the United States, where the Hispanic/Latino population is predominantly of Mexican descent.
Assuntos
Sequenciamento do Exoma , Genoma Humano , Genótipo , Hispânico ou Latino , Adulto , Humanos , África/etnologia , América/etnologia , Europa (Continente)/etnologia , Frequência do Gene/genética , Genética Populacional , Genoma Humano/genética , Técnicas de Genotipagem , Hispânico ou Latino/genética , Homozigoto , Mutação com Perda de Função/genética , México , Estudos ProspectivosRESUMO
Cannulated screw fixation is essential in treating femoral neck fractures, and the widely used freehand technique has several limitations. Therefore, we designed a new laser-positioning and navigation system and compared its efficacy with that of the traditional freehand technique in the cannulated screw fixation of femoral neck fractures. This randomized controlled single-blind trial recruited patients with femoral neck fracture, who were treated using either the newly designed laser-navigation device or the freehand technique. In in-vitro experiments, using the femoral neck model, the laser group was better than the freehand group in terms of operation time (P = 0.0153) and radiation exposure time (P < 0.001). In in-vivo experiments, involving 30 patients (15 in each group), the laser group was better than the freehand group in terms of operation time (P < 0.001), radiation exposure time (P < 0.001), blood loss (P < 0.001) and first success rate (P = 0.03). There was no difference in visual analog scale score, Harris score, and fracture-healing time between the two groups. In conclusion, the novel laser-guiding navigation system resulted in shorter operation time, less radiation exposure, and higher first success rate compared with the freehand technique. Further qualified investigations with a larger number of patients and longer follow-up are required in the future.
Assuntos
Fraturas do Colo Femoral , Colo do Fêmur , Humanos , Colo do Fêmur/cirurgia , Método Simples-Cego , Fixação Interna de Fraturas/métodos , Parafusos Ósseos , Fraturas do Colo Femoral/cirurgia , Resultado do Tratamento , Estudos RetrospectivosRESUMO
Coding variants that have significant impact on function can provide insights into the biology of a gene but are typically rare in the population. Identifying and ascertaining the frequency of such rare variants requires very large sample sizes. Here, we present the largest catalog of human protein-coding variation to date, derived from exome sequencing of 985,830 individuals of diverse ancestry to serve as a rich resource for studying rare coding variants. Individuals of African, Admixed American, East Asian, Middle Eastern, and South Asian ancestry account for 20% of this Exome dataset. Our catalog of variants includes approximately 10.5 million missense (54% novel) and 1.1 million predicted loss-of-function (pLOF) variants (65% novel, 53% observed only once). We identified individuals with rare homozygous pLOF variants in 4,874 genes, and for 1,838 of these this work is the first to document at least one pLOF homozygote. Additional insights from the RGC-ME dataset include 1) improved estimates of selection against heterozygous loss-of-function and identification of 3,459 genes intolerant to loss-of-function, 83 of which were previously assessed as tolerant to loss-of-function and 1,241 that lack disease annotations; 2) identification of regions depleted of missense variation in 457 genes that are tolerant to loss-of-function; 3) functional interpretation for 10,708 variants of unknown or conflicting significance reported in ClinVar as cryptic splice sites using splicing score thresholds based on empirical variant deleteriousness scores derived from RGC-ME; and 4) an observation that approximately 3% of sequenced individuals carry a clinically actionable genetic variant in the ACMG SF 3.1 list of genes. We make this important resource of coding variation available to the public through a variant allele frequency browser. We anticipate that this report and the RGC-ME dataset will serve as a valuable reference for understanding rare coding variation and help advance precision medicine efforts.
RESUMO
The plastic elongation of mesocotyl (MES) and coleoptile (COL), which can be repressed by light exposure, plays a vital role in maize seedling emergence and establishment under adverse environmental conditions. Understanding the molecular mechanisms of light-mediated repression of MES and COL elongation in maize will allow us to develop new strategies for genetic improvement of these two crucial traits in maize. A maize variety, Zheng58, was used to monitor the transcriptome and physiological changes in MES and COL in response to darkness, as well as red, blue, and white light. The elongation of MES and COL was significantly inhibited by light spectral quality in this order: blue light > red light > white light. Physiological analyses revealed that light-mediated inhibition of maize MES and COL elongation was closely related to the dynamics of phytohormones accumulation and lignin deposition in these tissues. In response to light exposure, the levels of indole-3-acetic acid, trans-zeatin, gibberellin 3, and abscisic acid levels significantly decreased in MES and COL; by contrast, the levels of jasmonic acid, salicylic acid, lignin, phenylalanine ammonia-lyase, and peroxidase enzyme activity significantly increased. Transcriptome analysis revealed multiple differentially expressed genes (DEGs) involved in circadian rhythm, phytohormone biosynthesis and signal transduction, cytoskeleton and cell wall organization, lignin biosynthesis, and starch and sucrose metabolism. These DEGs exhibited synergistic and antagonistic interactions, forming a complex network that regulated the light-mediated inhibition of MES and COL elongation. Additionally, gene co-expression network analysis revealed that 49 hub genes in one and 19 hub genes in two modules were significantly associated with the elongation plasticity of COL and MES, respectively. These findings enhance our knowledge of the light-regulated elongation mechanisms of MES and COL, and provide a theoretical foundation for developing elite maize varieties with improved abiotic stress resistance.
RESUMO
Rice plant counting is crucial for many applications in rice production, such as yield estimation, growth diagnosis, disaster loss assessment, etc. Currently, rice counting still heavily relies on tedious and time-consuming manual operation. To alleviate the workload of rice counting, we employed an UAV (unmanned aerial vehicle) to collect the RGB images of the paddy field. Then, we proposed a new rice plant counting, locating, and sizing method (RiceNet), which consists of one feature extractor frontend and 3 feature decoder modules, namely, density map estimator, plant location detector, and plant size estimator. In RiceNet, rice plant attention mechanism and positive-negative loss are designed to improve the ability to distinguish plants from background and the quality of the estimated density maps. To verify the validity of our method, we propose a new UAV-based rice counting dataset, which contains 355 images and 257,793 manual labeled points. Experiment results show that the mean absolute error and root mean square error of the proposed RiceNet are 8.6 and 11.2, respectively. Moreover, we validated the performance of our method with two other popular crop datasets. On these three datasets, our method significantly outperforms state-of-the-art methods. Results suggest that RiceNet can accurately and efficiently estimate the number of rice plants and replace the traditional manual method.
RESUMO
Synergetic elongation of mesocotyl and coleoptile are crucial in governing maize seedlings emergence, especially for the maize sown in deep soil. Studying the genomic regions controlling maize deep-sowing tolerance would aid the development of new varieties that are resistant to harsh conditions, such as drought and low temperature during seed germination. Using 346 F2:3 maize population families from W64A × K12 cross at three sowing depths, we identified 33 quantitative trait loci (QTLs) for the emergence rate, mesocotyl, coleoptile, and seedling lengths via composite interval mapping (CIM). These loci explained 2.89% to 14.17% of phenotypic variation in a single environment, while 12 of 13 major QTLs were identified at two or more sowing environments. Among those, four major QTLs in Bin 1.09, Bin 4.08, Bin 6.01, and Bin 7.02 supported pleiotropy for multiple deep-sowing tolerant traits. Meta-analysis identified 17 meta-QTLs (MQTLs) based on 130 original QTLs from present and previous studies. RNA-Sequencing of mesocotyl and coleoptile in both parents (W64A and K12) at 3 cm and 20 cm sowing environments identified 50 candidate genes expressed differentially in all major QTLs and MQTLs regions: six involved in the circadian clock, 27 associated with phytohormones biosynthesis and signal transduction, seven controlled lignin biosynthesis, five regulated cell wall organization formation and stabilization, three were responsible for sucrose and starch metabolism, and two in the antioxidant enzyme system. These genes with highly interconnected networks may form a complex molecular mechanism of maize deep-sowing tolerance. Findings of this study will facilitate the construction of molecular modules for deep-sowing tolerance in maize. The major QTLs and MQTLs identified could be used in marker-assisted breeding to develop elite maize varieties.
Assuntos
Melhoramento Vegetal , Zea mays , Humanos , Zea mays/genética , Mapeamento Cromossômico , Locos de Características Quantitativas/genética , Fenótipo , Plântula/genética , RNARESUMO
Maize seedlings contain high amounts of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), and the effect of DIMBOA is directly associated with multiple insect-resistance against insect pests such as Asian corn borer and corn leaf aphids. Although numerous genetic loci for multiple insect-resistant traits have been identified, little is known about genetic controls regarding DIMBOA content. In this study, the best linear unbiased prediction (BLUP) values of DIMBOA content in two ecological environments across 310 maize inbred lines were calculated; and their phenotypic data and BLUP values were used for marker-trait association analysis. We identified nine SSRs that were significantly associated with DIMBOA content, which explained 4.30-20.04% of the phenotypic variation. Combined with 47 original genetic loci from previous studies, we detected 19 hot loci and approximately 11 hot loci (in Bin 1.04, Bin 2.00-2.01, Bin 2.03-2.04, Bin 4.00-4.03, Bin 5.03, Bin 5.05-5.07, Bin 8.01-8.03, Bin 8.04-8.05, Bin 8.06, Bin 9.01, and Bin 10.04 regions) supported pleiotropy for their association with two or more insect-resistant traits. Within the 19 hot loci, we identified 49 candidate genes, including 12 controlling DIMBOA biosynthesis, 6 involved in sugar metabolism/homeostasis, 2 regulating peroxidases activity, 21 associated with growth and development [(auxin-upregulated RNAs (SAUR) family member and v-myb avian myeloblastosis viral oncogene homolog (MYB)], and 7 involved in several key enzyme activities (lipoxygenase, cysteine protease, restriction endonuclease, and ubiquitin-conjugating enzyme). The synergy and antagonism interactions among these genes formed the complex defense mechanisms induced by multiple insect pests. Moreover, sufficient genetic variation was reported for DIMBOA performance and SSR markers in the 310 tested maize inbred lines, and 3 highly (DIMBOA content was 402.74-528.88 µg g-1 FW) and 15 moderate (DIMBOA content was 312.92-426.56 µg g-1 FW) insect-resistant genotypes were major enriched in the Reid group. These insect-resistant inbred lines can be used as parents in maize breeding programs to develop new varieties.
Assuntos
Melhoramento Vegetal , Zea mays , Animais , Zea mays/genética , Insetos/genética , Variação Genética , Estudos de Associação GenéticaRESUMO
OBJECTIVE: Hard-to-heal wounds are a global health challenge, and effective treatments are still lacking. Moist exposed burn ointment (MEBO) and maggots are traditional treatments for promoting wound healing. This study was a preliminary exploration of combined maggot therapy and MEBO in the treatment of hard-to-heal wounds. METHOD: A coexistence experiment was conducted to determine the survival rates of maggots in MEBO. The maggots were placed in two different existence conditions: one set in MEBO (MEBO group), and another set as the control group (no MEBO) to compare survival rates. Case reports describe the use of the combined application of MEBO and maggots in the treatment of patients with hard-to-heal wounds. RESULTS: The coexistence experiment indicated that maggots in the MEBO group had a higher survival rate. From the therapeutic effect of the clinical cases (n=7), the combined application was safe and effective, with all the reported wounds eventually healing. CONCLUSION: Based on the findings of this study, we believe the combined application of MEBO and maggots is a promising way of promoting wound healing. Further studies and clinical trials are needed to elucidate the mechanism of the combined application in promoting wound healing and to more persuasively clarify the therapeutic effect.
Assuntos
Sitosteroides , Cicatrização , Animais , Desbridamento , Humanos , Larva , Sitosteroides/farmacologiaRESUMO
BACKGROUND: Intramedullary nail (IMN) is one of the key essential minimally invasive "weapons" in orthopaedic trauma, while the distal locking is still challenging for surgeons. Although there are various inventions and technologies to improve the locking procedure, there are still problems such as inaccurate positioning, excessive radiation exposure, low first success rate and long learning curve. Therefore, a new laser guiding navigation device was designed and compared with the traditional freehand (FH) technique in the distal locking of femoral IMN. METHODS: This randomized controlled single-blind trial recruited patients with femoral diaphyseal fracture. The self-designed laser navigation device (laser group) and freehand technique (FH group) were used in the distal locking of the IMNs. The patients enrolled were randomized into FH group and laser group, all operations were performed by two surgeons of the same level. The differences between the two groups were compared in terms of radiation exposure time, operative time, first success rate, blood loss, visual analogue score (VAS), Harris score and healing time. RESULTS: 32 patients ended the study period and 16 patients in each group. The results showed that the laser group was better than the FH group in terms of distal locking time (10(9/11) vs 19.5 (17.25/21) min, Z = 4.83, P < 0.001), distal locking radiation exposure time (46.5 (41.25/51.75) vs 105 (88.25/140) s, Z = 4.807, P < 0.001), first success rate (30/32 vs 20/32, χ2 = 9.143, P = 0.002) and blood loss (60 (50-100) vs 150 (105-192.5) mL, Z = 3.610, P = 0.0003). There was no difference in Harris score, VAS score, or fracture healing time between the two groups. CONCLUSION: Compared with the FH technique, the novel laser guiding navigation device for distal locking of femoral IMN has the advantages of shorter operative time, less radiation exposure and higher first success rate. Trial registration Chinese Clinical Trial Registry, ChiCTR2200060236. Registered 23 May 2022, https://www.chictr.org.cn/showprojen.aspx?proj=169130.
Assuntos
Pinos Ortopédicos , Fixação Intramedular de Fraturas , Humanos , Método Simples-Cego , Fluoroscopia/métodos , Fixação Intramedular de Fraturas/métodos , LasersRESUMO
An important and incompletely answered question is whether machine learning methods can be used to discover the excitation of rogue waves (RWs) in nonlinear systems, especially their dynamic properties and phase transitions. In this work, a theory-guided neural network (TgNN) is constructed to explore the RWs of one-dimensional Bose-Einstein condensates. We find that such method is superior to the ordinary deep neural network due to theory guidance of underlying problems. The former can directly give any excited location, timing, and structure of RWs using only a small amount of dynamic evolution data as the training data, without the tedious step-by-step iterative calculation process. In addition, based on the TgNN approach, a phase transition boundary is also discovered, which clearly distinguishes the first-order RW phase from the non-RW phase. The results not only greatly reduce computational time for exploring RWs, but also provide a promising technique for discovering phase transitions in parameterized nonlinear systems.
RESUMO
Objective: Both bone forearm fractures are common in children and rare in adults. The main surgical treatment is open reduction and internal fixation (ORIF) with plate, while the hybrid fixation of elastic-stable intramedullary nailing (ESIN) and the plate has been rarely reported before. Case report: We report a case of a 29-year-old male patient with both bone forearm fractures. Temporarily closed reduction and plaster external fixation were performed in the emergency room, and the patient was admitted to the orthopedic trauma ward for surgery. The patient underwent open reduction and plate fixation of the ulna and closed reduction and ESIN fixation of the radius. The fractures healing was satisfactory and the internal fixation was removed 12â months postoperatively. Conclusion: The hybrid fixation of ESIN and plate is an effective option for both bone forearm fractures in adults.
RESUMO
An important and incompletely answered question is whether a high-order rogue wave (RW) can be excited by the collision of first-order RWs, especially for its generation and propagation mechanisms. In this paper, the evolution properties of collisions between RWs are studied numerically for two-component coupled Bose-Einstein condensates. We find that whether a second-order RW can be successfully excited strongly depends on the location and time of the first-order RWs encountered. Only when the highest peaks of two RWs meet at the same position at the same time, can the standard second-order RW be triggered and its structure is in good agreement with the exact solution. Further, we demonstrate that such results are also applicable to the collision of subordinate RWs. This paper not only reveals the collision properties of RWs, but also provides a feasible scheme to generate higher-order RWs for experimental realization.
RESUMO
[This corrects the article DOI: 10.3389/fsurg.2022.855409.].