Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Cancer Genomics Proteomics ; 20(5): 433-447, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37643784

RESUMO

BACKGROUND/AIM: SRY-box containing gene 17 (SOX17) plays a pivotal role in cancer onset and progression and is considered a potential target for cancer diagnosis and treatment. However, the expression pattern of SOX17 in cancer and its clinical relevance remains unknown. Here, we explored the relationship between the expression of SOX17 and drug response by examining SOX17 expression patterns across multiple cancer types. MATERIALS AND METHODS: Single-cell and bulk RNA-seq analyses were used to explore the expression profile of SOX17. Analysis results were verified with qPCR and immunohistochemistry. Survival, drug response, and co-expression analyses were performed to illustrate its correlation with clinical outcomes. RESULTS: The results revealed that abnormal expression of SOX17 is highly heterogenous across multiple cancer types, indicating that SOX17 manifests as a cancer type-dependent feature. Furthermore, the expression pattern of SOX17 is also associated with cancer prognosis in certain cancer types. Strong SOX17 expression correlates with the potency of small molecule drugs that affect PI3K/mTOR signaling. FGF18, a gene highly relevant to SOX17, is involved in the PI3K-AKT signaling pathway. Single-cell RNA-seq analysis demonstrated that SOX17 is mainly expressed in endothelial cells and barely expressed in other cells but spreads to other cell types during the development of ovarian cancer. CONCLUSION: Our study revealed the expression pattern of SOX17 in pan-cancer through bulk and single-cell RNA-seq analyses and determined that SOX17 is related to the diagnosis, staging, and prognosis of some tumors. These findings have clinical implications and may help identify mechanistic pathways amenable to pharmacological interventions.


Assuntos
Células Endoteliais , Neoplasias , Humanos , Células Endoteliais/metabolismo , Fosfatidilinositol 3-Quinases , Prognóstico , Imuno-Histoquímica , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismo
2.
Am J Respir Crit Care Med ; 207(10): 1345-1357, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36622818

RESUMO

Rationale and Objectives: Up to 20% of idiopathic interstitial lung disease is familial, referred to as familial pulmonary fibrosis (FPF). An integrated analysis of FPF genetic risk was performed by comprehensively evaluating for genetic rare variants (RVs) in a large cohort of FPF kindreds. Methods: Whole-exome sequencing and/or candidate gene sequencing from affected individuals in 569 FPF kindreds was performed, followed by cosegregation analysis in large kindreds, gene burden analysis, gene-based risk scoring, cell-type enrichment analysis, and coexpression network construction. Measurements and Main Results: It was found that 14.9-23.4% of genetic risk in kindreds could be explained by RVs in genes previously linked to FPF, predominantly telomere-related genes. New candidate genes were identified in a small number of families-including SYDE1, SERPINB8, GPR87, and NETO1-and tools were developed for evaluation and prioritization of RV-containing genes across kindreds. Several pathways were enriched for RV-containing genes in FPF, including focal adhesion and mitochondrial complex I assembly. By combining single-cell transcriptomics with prioritized candidate genes, expression of RV-containing genes was discovered to be enriched in smooth muscle cells, type II alveolar epithelial cells, and endothelial cells. Conclusions: In the most comprehensive FPF genetic study to date, the prevalence of RVs in known FPF-related genes was defined, and new candidate genes and pathways relevant to FPF were identified. However, new RV-containing genes shared across multiple kindreds were not identified, thereby suggesting that heterogeneous genetic variants involving a variety of genes and pathways mediate genetic risk in most FPF kindreds.


Assuntos
Doenças Pulmonares Intersticiais , Fibrose Pulmonar , Humanos , Fibrose Pulmonar/genética , Células Endoteliais , Doenças Pulmonares Intersticiais/genética , Fatores de Risco , Telômero , Predisposição Genética para Doença/genética , Receptores de Ácidos Lisofosfatídicos/genética
3.
Front Immunol ; 13: 923194, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935940

RESUMO

Ovarian cancer is the most common and lethal gynecological tumor in women worldwide. High-grade serous ovarian carcinoma (HGSOC) is one of the histological subtypes of epithelial ovarian cancer, accounting for 70%. It often occurs at later stages associated with a more fatal prognosis than endometrioid carcinomas (EC), another subtype of epithelial ovarian cancer. However, the molecular mechanism and biology underlying the metastatic HGSOC (HG_M) immunophenotype remain poorly elusive. Here, we performed single-cell RNA sequencing analyses of primary HGSOC (HG_P) samples, metastatic HGSOC (HG_M) samples, and endometrioid carcinomas (EC) samples. We found that ERBB2 and HOXB-AS3 genes were more amplified in metastasis tumors than in primary tumors. Notably, high-grade serous ovarian cancer metastases are accompanied by dysregulation of multiple pathways. Malignant cells with features of epithelial-mesenchymal transition (EMT) affiliated with poor overall survival were identified. In addition, cancer-associated fibroblasts with EMT-program were enriched in HG_M, participating in angiogenesis and immune regulation, such as IL6/STAT3 pathway activity. Compared with ECs, HGSOCs exhibited higher T cell infiltration. PRDM1 regulators may be involved in T cell exhaustion in ovarian cancer. The CX3CR1_macro subpopulation may play a role in promoting tumor progression in ovarian cancer with high expression of BAG3, IL1B, and VEGFA. The new targets we discovered in this study will be useful in the future, providing guidance on the treatment of ovarian cancer.


Assuntos
Carcinoma Endometrioide , Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Carcinoma Endometrioide/metabolismo , Carcinoma Epitelial do Ovário , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/patologia , Feminino , Humanos , Neoplasias Ovarianas/metabolismo , RNA , Microambiente Tumoral/genética
4.
New Phytol ; 230(5): 1953-1966, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33638214

RESUMO

Leaf angle is an important agronomic trait in cereals that helps determine plant yield by affecting planting density. However, the regulation mechanism of leaf angle remained elusive. Here, we show that OsbHLH98, a rice bHLH transcription factor, negatively regulates leaf angle. osbhlh98 mutant leaves formed a larger leaf angle, whereas transgenic plants overexpressing OsbHLH98 exhibited a slight reduction in leaf angle. We determined that the changes in leaf angle resulted from increased number and size of parenchyma cells on the adaxial side of the lamina joint in osbhlh98 mutants. Experiments using reporter constructs showed that OsbHLH98 is expressed on the adaxial side of lamina joints, consistent with its proposed function in regulating leaf angle. Furthermore, we established by chromatin immunoprecipitation and CUT&RUN that OsBUL1 is a direct downstream target of OsbHLH98. Transactivation assays and reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis indicated that OsbHLH98 represses OsBUL1 transcription. Our results demonstrate that OsbHLH98 negatively regulates leaf angle by counteracting brassinosteroid-induced cell elongation via the repression of OsBUL1 transcription. The characterization of OsbHLH98 and its role in determining leaf angle will lay the foundation to develop the ideal plant architecture for adaptation to high planting density.


Assuntos
Oryza , Brassinosteroides , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo
5.
Mol Cell Proteomics ; 20: 100013, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33568340

RESUMO

Aspergillus flavus (A. flavus), a pathogenic fungus, can produce carcinogenic and toxic aflatoxins that are a serious agricultural and medical threat worldwide. Attempts to decipher the aflatoxin biosynthetic pathway have been hampered by the lack of a high-quality genome annotation for A. flavus. To address this gap, we performed a comprehensive proteogenomic analysis using high-accuracy mass spectrometry data for this pathogen. The resulting high-quality data set confirmed the translation of 8724 previously predicted genes and identified 732 novel proteins, 269 splice variants, 447 single amino acid variants, 188 revised genes. A subset of novel proteins was experimentally validated by RT-PCR and synthetic peptides. Further functional annotation suggested that a number of the identified novel proteins may play roles in aflatoxin biosynthesis and stress responses in A. flavus. This comprehensive strategy also identified a wide range of posttranslational modifications (PTMs), including 3461 modification sites from 1765 proteins. Functional analysis suggested the involvement of these modified proteins in the regulation of cellular metabolic and aflatoxin biosynthetic pathways. Together, we provided a high-quality annotation of A. flavus genome and revealed novel insights into the mechanisms of aflatoxin production and pathogenicity in this pathogen.


Assuntos
Aflatoxinas/metabolismo , Aspergillus flavus/genética , Proteínas Fúngicas/genética , Genoma Fúngico , Aspergillus flavus/metabolismo , Cromatografia Líquida , Proteínas Fúngicas/metabolismo , Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Proteogenômica , Proteoma , Espectrometria de Massas em Tandem
6.
Brief Bioinform ; 22(2): 714-725, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33432321

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic, caused by the coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has created an unprecedented threat to public health. The pandemic has been sweeping the globe, impacting more than 200 countries, with more outbreaks still lurking on the horizon. At the time of the writing, no approved drugs or vaccines are available to treat COVID-19 patients, prompting an urgent need to decipher mechanisms underlying the pathogenesis and develop curative treatments. To fight COVID-19, researchers around the world have provided specific tools and molecular information for SARS-CoV-2. These pieces of information can be integrated to aid computational investigations and facilitate clinical research. This paper reviews current knowledge, the current status of drug development and various resources for key steps toward effective treatment of COVID-19, including the phylogenetic characteristics, genomic conservation and interaction data. The final goal of this paper is to provide information that may be utilized in bioinformatics approaches and aid target prioritization and drug repurposing. Several SARS-CoV-2-related tools/databases were reviewed, and a web-portal named OverCOVID (http://bis.zju.edu.cn/overcovid/) is constructed to provide a detailed interpretation of SARS-CoV-2 basics and share a collection of resources that may contribute to therapeutic advances. These information could improve researchers' understanding of SARS-CoV-2 and help to accelerate the development of new antiviral treatments.


Assuntos
Pesquisa Biomédica , COVID-19/virologia , Biologia Computacional , SARS-CoV-2/fisiologia , Antivirais/uso terapêutico , Reposicionamento de Medicamentos , Humanos , SARS-CoV-2/isolamento & purificação , Tratamento Farmacológico da COVID-19
7.
Virulence ; 12(1): 96-113, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33315533

RESUMO

Aspergillus flavus (A. flavus) is one of the most important model environmental fungi which can produce a potent toxin and carcinogen known as aflatoxin. Aflatoxin contamination causes massive agricultural economic loss and a critical human health issue each year. Although a functional vacuole has been highlighted for its fundamental importance in fungal virulence, the molecular mechanisms of the vacuole in regulating the virulence of A. flavus remain largely unknown. Here, we identified a novel vacuole-related protein in A. flavus, the ortholog of phosphatidylinositol-3-phosphate-5-kinase (Fab1) in Saccharomyces cerevisiae. This kinase was located at the vacuolar membrane, and loss of fab1 function was found to affect the growth, conidia and sclerotial development, cellular acidification and metal ion homeostasis, aflatoxin production and pathogenicity of A. flavus. Further functional analysis revealed that Fab1 was required to maintain the vacuole size and cell morphology. Additional quantitative proteomic analysis suggested that Fab1 was likely to play an important role in maintaining vacuolar/cellular homeostasis, with vacuolar dysregulation upon fab1 deletion leading to impaired aflatoxin synthesis in this fungus. Together, these results provide insight into the molecular mechanisms by which this pathogen produces aflatoxin and mediates its pathogenicity, and may facilitate dissection of the vacuole-mediated regulatory network in A. flavus.


Assuntos
1-Fosfatidilinositol 4-Quinase/genética , Aflatoxinas/biossíntese , Aspergillus flavus/enzimologia , Aspergillus flavus/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Aflatoxinas/genética , Aspergillus flavus/patogenicidade , Proteínas Fúngicas/metabolismo , Homeostase , Sementes/microbiologia , Zea mays/microbiologia
8.
Environ Microbiol ; 22(7): 2792-2810, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32250030

RESUMO

Reactive oxygen species (ROS) induce the synthesis of a myriad of secondary metabolites, including aflatoxins. It raises significant concern as it is a potent environmental contaminant. In Aspergillus flavus., antioxidant enzymes link ROS stress response with coordinated gene regulation of aflatoxin biosynthesis. In this study, we characterized the function of a core component of the antioxidant enzyme catalase (CTA1) of A. flavus. Firstly, we verified the presence of cta1 corresponding protein (CTA1) by Western blot analysis and mass-spectrometry based analysis. Then, the functional study revealed that the growth, sporulation and sclerotia formation significantly increased, while aflatoxins production and virulence were decreased in the cta1 deletion mutant as compared with the WT and complementary strains. Furthermore, the absence of the cta1 gene resulted in a significant rise in the intracellular ROS level, which in turn added to the oxidative stress level of cells. A further quantitative proteomics investigation hinted that in vivo, CTA1 might maintain the ROS level to facilitate the aflatoxin synthesis. All in all, the pleiotropic phenotype of A. flavus CTA1 deletion mutant revealed that the antioxidant system plays a crucial role in fungal development, aflatoxins biosynthesis and virulence.


Assuntos
Aflatoxinas/biossíntese , Aspergillus flavus/enzimologia , Aspergillus flavus/patogenicidade , Catalase/metabolismo , Virulência/genética , Antioxidantes/metabolismo , Aspergillus flavus/genética , Catalase/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio/metabolismo , Deleção de Sequência , Virulência/efeitos dos fármacos
9.
Sci Rep ; 9(1): 6658, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-31040312

RESUMO

Long noncoding RNAs (lncRNAs) have been identified in many mammals and plants and are known to play crucial roles in multiple biological processes. Pineapple is an important tropical fruit and a good model for studying the plant evolutionary adaptation to the dry environment and the crassulacean acid metabolism (CAM) photosynthesis strategy; however, the lncRNAs involved in CAM pathway remain poorly characterized. Here, we analyzed the available RNA-seq data sets derived from 26 pineapple leaf samples at 13 time points and identified 2,888 leaf lncRNAs, including 2,046 long intergenic noncoding RNAs (lincRNAs) and 842 long noncoding natural antisense transcripts (lncNATs). Pineapple leaf lncRNAs are expressed in a highly tissue-specific manner. Co-expression analysis of leaf lncRNA and mRNA revealed that leaf lncRNAs are preferentially associated with photosynthesis genes. We further identified leaf lncRNAs that potentially function as competing endogenous RNAs (ceRNAs) of two CAM photosynthesis pathway genes, PPCK and PEPC, and revealed their diurnal expression pattern in leaves. Moreover, we found that 48% of lncRNAs exhibit diurnal expression patterns in leaves, suggesting their important roles in CAM. This study conducted a comprehensive genome-wide analysis of leaf lncRNAs and identified their role in gene expression regulation of the CAM photosynthesis pathway in pineapple.


Assuntos
Ananas/genética , Ananas/metabolismo , Fotossíntese , Folhas de Planta/genética , Folhas de Planta/metabolismo , RNA Longo não Codificante , RNA de Plantas , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Genoma de Planta , Genômica/métodos , Fases de Leitura Aberta , Especificidade de Órgãos , Fotossíntese/genética , RNA Longo não Codificante/genética
11.
Mol Plant ; 10(10): 1274-1292, 2017 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-28951178

RESUMO

Deposition of the histone variant H2A.Z at gene bodies regulates transcription by modifying chromatin accessibility in plants. However, the role of H2A.Z enrichment at the promoter and enhancer regions is unclear, and how H2A.Z interacts with other mechanisms of chromatin modification to regulate gene expression remains obscure. Here, we mapped genome-wide H2A.Z, H3K4me3, H3K27me3, Pol II, and nucleosome occupancy in Arabidopsis inflorescence. We showed that H2A.Z preferentially associated with H3K4me3 at promoters, while it was found with H3K27me3 at enhancers, and that H2A.Z deposition negatively correlated with gene expression. In addition, we demonstrated that H2A.Z represses gene expression by establishing low gene accessibility at +1 nucleosome and maintaining high gene accessibility at -1 nucleosome. We further showed that the high measures of gene responsiveness correlate with the H2A.Z-associated closed +1 nucleosome structure. Moreover, we found that H2A.Z represses enhancer activity by promoting H3K27me3 and preventing H3K4me3 histone modifications. This study provides a framework for future studies of H2A.Z functions and opens up new aspects for decoding the interplay between chromatin modification and histone variants in transcriptional control.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Histonas/fisiologia , Nucleossomos/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cromatina/metabolismo , Elementos Facilitadores Genéticos , Histonas/genética , Mutação , Nucleossomos/ultraestrutura , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo
12.
Fungal Biol ; 121(10): 869-875, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28889911

RESUMO

Protein phosphorylation, one of the most classic post-translational modification, plays a critical role in diverse cellular processes including cell cycle, growth, and signal transduction pathways. However, the available information about phosphorylation in fungi is limited. Here, we provided a Fungi Phosphorylation Database (FPD) that comprises high-confidence in vivo phosphosites identified by MS-based proteomics in various fungal species. This comprehensive phosphorylation database contains 62 272 non-redundant phosphorylation sites in 11 222 proteins across eight organisms, including Aspergillus flavus, Aspergillus nidulans, Fusarium graminearum, Magnaporthe oryzae, Neurospora crassa, Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Cryptococcus neoformans. A fungi-specific phosphothreonine motif and several conserved phosphorylation motifs were discovered by comparatively analysing the pattern of phosphorylation sites in plants, animals, and fungi.


Assuntos
Bases de Dados Factuais , Proteínas Fúngicas/metabolismo , Fungos/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Animais , Bases de Dados Factuais/normas , Humanos , Fosforilação , Plantas/metabolismo , Serina/metabolismo , Treonina/metabolismo , Tirosina/metabolismo
13.
J Hazard Mater ; 324(Pt B): 691-700, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27899241

RESUMO

Aflatoxins (AFs), produced mainly by Aspergillus flavus and Aspergillus parasiticus, are strongly toxic and carcinogenic. Here, we showed that glutamine is the optimal nitrogen source for AF-production in A. flavus grown in Czapek Dox medium. Additionally, 4mM glutamine was the threshold for high production of aflatoxin B1. However, no significant impact of glutamine synthetase inhibitor was detected for on AF biosynthesis. In contrast, rapamycin could significantly suppress the glutamine inducing effect on AFs production, simultaneously inhibiting the fungal growth and conidiation. To identify the genes and regulatory networks involved in AFs biosynthesis, especially concerning the nitrogen source metabolism pathway and the target of rapamycin (TOR) signaling pathway, we obtained transcriptomes for A. flavus under treatment of three nitrogen sources by RNA-sequencing. We identified 1429 differentially expressed genes. Through GO and KEGG pathway analyses, the relationship between nitrogen metabolism and AFs biosynthesis was revealed, and the effects of TOR inhibitor were confirmed. Additionally, the quantitative real-time PCR results verified the credibility and reliability of the RNA-seq data, and were consistent with the other experimental results. Our research laid the foundation for a primary study on the involvement of the nitrogen regulatory network and TOR signaling pathway in AF biosynthesis.


Assuntos
Aflatoxina B1/biossíntese , Aspergillus flavus/crescimento & desenvolvimento , Glutamina/metabolismo , Nitrogênio/metabolismo , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/genética , Aspergillus flavus/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/efeitos dos fármacos , Glutamato-Amônia Ligase/antagonistas & inibidores , Glutamato-Amônia Ligase/genética , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Transcriptoma/efeitos dos fármacos
14.
J Agric Food Chem ; 64(35): 6772-82, 2016 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-27532332

RESUMO

Small ubiquitin-like modifiers (SUMOs) can be reversibly attached to target proteins in a process known as SUMOylation, and this process influences several important eukaryotic cell events. However, little is known regarding SUMO or SUMOylation in Aspergillus flavus. Here, we identified a novel member of the SUMO family in A. flavus, AfSumO, and validated the existence of SUMOylation in this pathogenic filamentous fungus. We investigated the roles of AfsumO in A. flavus by determining the effects of AfsumO mutations on the growth phenotype, stress response, conidia and sclerotia production, aflatoxin biosynthesis, and pathogenicity to seeds, and we found that SUMOylation plays a role in fungal virulence and toxin attributes. Taken together, these results not only reveal potential mechanisms of fungal virulence and toxin attributes in A. flavus but also provide a novel approach for promising new control strategies of this fungal pathogen.


Assuntos
Aflatoxinas/metabolismo , Aspergillus flavus/metabolismo , Aspergillus flavus/patogenicidade , Proteínas Fúngicas/metabolismo , Proteína SUMO-1/metabolismo , Arachis/microbiologia , Aspergillus flavus/genética , Aspergillus flavus/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Doenças das Plantas/microbiologia , Proteína SUMO-1/genética , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/metabolismo , Esporos Fúngicos/patogenicidade , Virulência
15.
Planta ; 244(4): 775-87, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27160169

RESUMO

MAIN CONCLUSION: Moso bamboo MITEs were genome-wide identified first time, and data shows that MITEs contribute to the genomic diversity and differentiation of bamboo. Miniature inverted-repeat transposable elements (MITEs) are widespread in animals and plants. There are a large number of transposable elements in moso bamboo (Phyllostachys heterocycla var. pubescens) genome, but the genome-wide information of moso bamboo MITEs is not known yet. Here we identified 362 MITE families with a total of 489,592 MITE-related sequences, accounting for 4.74 % of the moso bamboo genome. The 362 MITE families are clustered into six known and one unknown super-families. Our analysis indicated that moso bamboo MITEs preferred to reside in or near the genes that might be involved in regulation of host gene expression. Of the seven super-families, three might undergo major expansion event twice, respectively, during 8-11 million years ago (mya) ago and 22-28 mya ago; two might experience a long expansion period from 6 to 13 mya. Almost 1/3 small RNAs might be derived from the MITE sequences. Some MITE families generate small RNAs mainly from the terminals, while others predominantly from the central region. Given the high copy number of MITEs, many siRNAs and miRNAs derived from MITE sequences and the preferential insertion of MITE into gene regions, MITEs may contribute to the genomic diversity and differentiation of bamboo.


Assuntos
Elementos de DNA Transponíveis/genética , Evolução Molecular , Genoma de Planta/genética , Sequências Repetidas Invertidas/genética , Poaceae/genética , Perfilação da Expressão Gênica , MicroRNAs/genética , Mutagênese Insercional , Polimorfismo Genético , RNA Interferente Pequeno/genética , Fatores de Tempo
16.
Brief Bioinform ; 17(1): 63-77, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25922372

RESUMO

RNA structure plays a crucial role in gene maturation, regulation and function. Determining the form and frequency of RNA folds is essential for a better understanding of how RNA exerts its functions. Low-throughput studies have focused on RNA primary sequences and expression levels, but with an emphasis on relatively small numbers of transcripts. However, with the recent advent of high-throughput technologies, it is realistic to begin analyzing RNA secondary structures on a genome-wide scale. Here, we review genome-wide RNA secondary structure profiles as well as advances in computational structure predictions. We further discuss the novel characteristics of RNA secondary structure across messenger RNAs. Probing RNA secondary structure by high-throughput sequencing will enable us to build atlases of RNA secondary structures, an important step in helping us to understand the versatility of RNA functions in diverse cellular processes.


Assuntos
Conformação de Ácido Nucleico , RNA/química , Algoritmos , Animais , Pareamento de Bases , Sequência de Bases , Biologia Computacional/métodos , Simulação por Computador , Bases de Dados de Ácidos Nucleicos/estatística & dados numéricos , Epigênese Genética , Sequenciamento de Nucleotídeos em Larga Escala/estatística & dados numéricos , Humanos , Aprendizado de Máquina , Modelos Moleculares , Filogenia , RNA/genética , RNA/metabolismo , Splicing de RNA , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA/estatística & dados numéricos , Processos Estocásticos , Termodinâmica
17.
Sci Rep ; 5: 14582, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26416011

RESUMO

To investigate the changes in transcript and relative protein levels in response to temperature, complementary transcriptomic and proteomic analyses were used to identify changes in Aspergillus flavus grown at 28 °C and 37 °C. A total of 3,886 proteins were identified, and 2,832 proteins were reliably quantified. A subset of 664 proteins was differentially expressed upon temperature changes and enriched in several Kyoto Encyclopedia of Genes and Genomes pathways: translation-related pathways, metabolic pathways, and biosynthesis of secondary metabolites. The changes in protein profiles showed low congruency with alterations in corresponding transcript levels, indicating that post-transcriptional processes play a critical role in regulating the protein level in A. flavus. The expression pattern of proteins and transcripts related to aflatoxin biosynthesis showed that most genes were up-regulated at both the protein and transcript level at 28 °C. Our data provide comprehensive quantitative proteome data of A. flavus at conducive and nonconducive temperatures.


Assuntos
Aspergillus flavus/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Proteoma/genética , RNA Mensageiro/genética , Transcriptoma , Aflatoxinas/biossíntese , Aflatoxinas/genética , Perfilação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Redes e Vias Metabólicas , Anotação de Sequência Molecular , Mapeamento de Interação de Proteínas , Temperatura , Ativação Transcricional
18.
Plant Cell Physiol ; 56(10): 1930-43, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26228273

RESUMO

Auxin transport plays a pivotal role in the interaction between legume species and nitrogen-fixing bacteria to form symbioses. Auxin influx carriers auxin resistant 1/like aux 1 (AUX/LAX), efflux carriers pin-formed (PIN) and efflux/conditional P-glycoprotein (PGP/ABCB) are three major protein families participating in auxin polar transport. We used the latest Medicago truncatula genome sequence to characterize and analyze the M. truncatula LAX (MtLAX), M. truncatula PIN (MtPIN) and M. truncatula ABCB (MtABCB) families. Transient expression experiments indicated that three representative auxin transporters (MtLAX3, MtPIN7 and MtABCB1) showed cell plasma membrane localizations. The expression of most MtLAX, MtPIN and MtABCB genes was up-regulated in the roots and was down-regulated in the shoots by Sinorhizobium meliloti infection in the wild type (WT). However, the expression of these genes was down-regulated in both the roots and shoots of an infection-resistant mutant, dmi3. The different expression patterns between the WT and the mutant roots indicated that auxin relocation may be involved in rhizobial infection responses. Furthermore, IAA contents were significantly up-regulated in the shoots and down-regulated in the roots after Sinorhizobium meliloti infection in the WT. Inoculation of roots with rhizobia may reduce the auxin loading from shoots to roots by inhibiting the expression of most auxin transporter genes. However, the rate of change of gene expression and IAA contents in the dmi3 mutant were obviously lower than in the WT. The identification and expression analysis of auxin transporter genes helps us to understand the roles of auxin in the regulation of nodule formation in M. truncatula.


Assuntos
Medicago truncatula/metabolismo , Medicago truncatula/microbiologia , Proteínas de Membrana Transportadoras/metabolismo , Sinorhizobium meliloti/fisiologia , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Medicago truncatula/genética , Proteínas de Membrana Transportadoras/genética , Simbiose/genética , Simbiose/fisiologia
19.
Fungal Genet Biol ; 81: 113-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25813270

RESUMO

Small non-coding RNA (sRNA) in various organisms remains a mysterious subject. Although microRNAs (miRNAs) have been intensively investigated in plants and animals, the study of miRNAs in fungi has been limited. Only microRNA-like RNAs (milRNAs) have been reported in several filamentous fungi. In this study, Illumina deep sequencing was performed to characterize the sRNA in Aspergillus flavus and to evaluate their responses to water activity and temperature. Global expression analysis showed an extensively differential expression of sRNA loci in A. flavus under different temperature or water activities. In addition, a total of 135 milRNAs were identified in A. flavus. The milRNA profiles obtained in deep sequencing were further validated by RT-qPCR assay. The presence and differential expression of milRNAs under different temperature or water activities in A. flavus imply that milRNAs might play important roles in the mycotoxin biosynthesis and mycelium growth in fungi A. flavus.


Assuntos
Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/efeitos da radiação , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos da radiação , MicroRNAs/biossíntese , Temperatura , Água/metabolismo , Aspergillus flavus/genética , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/genética , Reação em Cadeia da Polimerase em Tempo Real
20.
Brief Funct Genomics ; 14(2): 91-101, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24914100

RESUMO

A recent highlight of genomics research has been the discovery of many families of transcripts which have function but do not code for proteins. An important group is long noncoding RNAs (lncRNAs), which are typically longer than 200 nt, and whose members originate from thousands of loci across genomes. We review progress in understanding the biogenesis and regulatory mechanisms of lncRNAs. We describe diverse computational and high throughput technologies for identifying and studying lncRNAs. We discuss the current knowledge of functional elements embedded in lncRNAs as well as insights into the lncRNA-based regulatory network in animals. We also describe genome-wide studies of large amount of lncRNAs in plants, as well as knowledge of selected plant lncRNAs with a focus on biotic/abiotic stress-responsive lncRNAs.


Assuntos
Redes Reguladoras de Genes , Plantas/genética , RNA Longo não Codificante/genética , Animais , Sequência de Bases , Genoma/genética , Modelos Biológicos , Dados de Sequência Molecular , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA