Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Adv Biol (Weinh) ; 7(12): e2300208, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37670395

RESUMO

The electroencephalographic (EEG) diagnosis of mild traumatic brain injury (mTBI) is not usually timely, and the detection is often performed several hours or days after the trauma, leading to a decrease in the accuracy of its detection. In this study, EEG signals are recorded immediately after mTBI by connecting a bipolar single lead to injured animals. And three types of EEG features, namely time domain, frequency domain, and nonlinear dynamics, are screened for optimal feature subset in mTBI detection. First, EEG signals of animals are recorded before and after establishing the animal model of mTBI. Second, signal preprocessing, feature extraction, and feature preprocessing are performed to obtain the full-feature dataset, and 1442 feature subsets are obtained by 15 feature reduction algorithms extracted from combinations of 47 features. Ultimately, the support vector machines and K-nearest neighbor algorithms are trained and tested respectively, and their performance is comprehensively compared to determine the optimal feature subset for mTBI detection. In the EEG dataset collected in this study, a total of eight feature subsets extracted from combinations of original 47 features and classification models with 100% accuracy are obtained. This study shows the perspective of immediately detecting mTBI based on a bipolar single-lead EEG.


Assuntos
Concussão Encefálica , Animais , Concussão Encefálica/diagnóstico , Eletroencefalografia , Algoritmos , Dinâmica não Linear , Engenharia
3.
Biomed Eng Online ; 22(1): 80, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582824

RESUMO

BACKGROUND: Cerebral edema is an extremely common secondary disease in post-stroke. Point-of-care testing for cerebral edema types has important clinical significance for the precise management to prevent poor prognosis. Nevertheless, there has not been a fully accepted bedside testing method for that. METHODS: A symmetric cancellation near-field coupling phase shift (NFCPS) monitoring system is established based on the symmetry of the left and right hemispheres and the fact that unilateral lesions do not affect healthy hemispheres. For exploring the feasibility of this system to reflect the occurrence and development of cerebral edema, 13 rabbits divided into experimental group (n = 8) and control group (n = 5) were performed 24-h NFCPS continuous monitoring experiments. After time difference offset and feature band averaging processing, the changing trend of NFCPS at the stages dominated by cytotoxic edema (CE) and vasogenic edema (VE), respectively, was analyzed. Furthermore, the features under the different time windows were extracted. Then, a discriminative model of cerebral edema types based on support vector machines (SVM) was established and performance of multiple feature combinations was compared. RESULTS: The NFCPS monitoring outcomes of experimental group endured focal ischemia modeling by thrombin injection show a trend of first decreasing and then increasing, reaching the lowest value of - 35.05° at the 6th hour. Those of control group do not display obvious upward or downward trend and only fluctuate around the initial value with an average change of - 0.12°. Furthermore, four features under the 1-h and 2-h time windows were extracted. Based on the discriminative model of cerebral edema types, the classification accuracy of 1-h window is higher than 90% and the specificity is close to 1, which is almost the same as the performance of the 2-h window. CONCLUSION: This study proves the feasibility of NFCPS technology combined with SVM to distinguish cerebral edema types in a short time, which is promised to become a new solution for immediate and precise management of dehydration therapy after ischemic stroke.


Assuntos
Edema Encefálico , Acidente Vascular Cerebral , Animais , Coelhos , Edema Encefálico/tratamento farmacológico , Máquina de Vetores de Suporte , Testes Imediatos
4.
Biomed Eng Online ; 22(1): 78, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37559130

RESUMO

BACKGROUND: Cerebrovascular autoregulation (CVAR) is the mechanism that maintains constant cerebral blood flow by adjusting the caliber of the cerebral vessels. It is important to have an effective, contactless way to monitor and assess CVAR in patients with ischemia. METHODS: The adjustment of cerebral blood flow leads to changes in the conductivity of the whole brain. Here, whole-brain conductivity measured by the magnetic induction phase shift method is a valuable alternative to cerebral blood volume for non-contact assessment of CVAR. Therefore, we proposed the correlation coefficient between spontaneous slow oscillations in arterial blood pressure and the corresponding magnetic induction phase shift as a novel index called the conductivity reactivity index (CRx). In comparison with the intracranial pressure reactivity index (PRx), the feasibility of the conductivity reactivity index to assess CVAR in the early phase of cerebral ischemia has been preliminarily confirmed in animal experiments. RESULTS: There was a significant difference in the CRx between the cerebral ischemia group and the control group (p = 0.002). At the same time, there was a significant negative correlation between the CRx and the PRx (r = - 0.642, p = 0.002) after 40 min after ischemia. The Bland-Altman consistency analysis showed that the two indices were linearly related, with a minimal difference and high consistency in the early ischemic period. The sensitivity and specificity of CRx for cerebral ischemia identification were 75% and 20%, respectively, and the area under the ROC curve of CRx was 0.835 (SE = 0.084). CONCLUSION: The animal experimental results preliminarily demonstrated that the CRx can be used to monitor CVAR and identify CVAR injury in early ischemic conditions. The CRx has the potential to be used for contactless, global, bedside, and real-time assessment of CVAR of patients with ischemic stroke.


Assuntos
Isquemia Encefálica , Encéfalo , Animais , Coelhos , Monitorização Fisiológica/métodos , Encéfalo/irrigação sanguínea , Infarto Cerebral , Circulação Cerebrovascular/fisiologia , Homeostase/fisiologia , Pressão Intracraniana/fisiologia
5.
PeerJ ; 10: e13002, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35228911

RESUMO

Cerebral blood flow (CBF) monitoring is of great significance for treating and preventing strokes. However, there has not been a fully accepted method targeting continuous assessment in clinical practice. In this work, we built a noninvasive continuous assessment system for cerebral blood flow pulsation (CBFP) that is based on magnetic induction phase shift (MIPS) technology and designed a physical model of the middle cerebral artery (MCA). Physical experiments were carried out through different simulations of CBF states. Four healthy volunteers were enrolled to perform the MIPS and ECG synchronously monitoring trials. Then, the components of MIPS related to the blood supply level and CBFP were investigated by signal analysis in time and frequency domain, wavelet decomposition and band-pass filtering. The results show that the time-domain baseline of MIPS increases with blood supply level. A pulse signal was identified in the spectrum (0.2-2 Hz in 200-2,000 ml/h groups, respectively) of MIPS when the simulated blood flow rate was not zero. The pulsation frequency with different simulated blood flow rates is the same as the squeezing frequency of the feeding pump. Similar to pulse waves, the MIPS signals on four healthy volunteers all had periodic change trends with obvious peaks and valleys. Its frequency is close to that of the ECG signal and there is a certain time delay between them. These results indicate that the CBFP component can effectively be extracted from MIPS, through which different blood supply levels can be distinguished. This method has the potential to become a new solution for non-invasive and comprehensive monitoring of CBFP.


Assuntos
Magnetismo , Artéria Cerebral Média , Humanos , Fenômenos Físicos , Artéria Cerebral Média/diagnóstico por imagem , Circulação Cerebrovascular , Fenômenos Magnéticos
6.
Biomed Eng Online ; 21(1): 20, 2022 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-35346206

RESUMO

BACKGROUND: Early diagnosis and continuous monitoring are the key to emergency treatment and intensive care of patients with acute ischemic stroke (AIS). Nevertheless, there has not been a fully accepted method targeting continuous assessment of AIS in clinical. METHODS: Near-field coupling (NFC) sensing can obtain the conductivity related to the volume of intracranial components with advantages of non-invasiveness, strong penetrability and real-time monitoring. In this work, we built a multi-parameter monitoring system that is able to measure changes of phase and amplitude in the process of electromagnetic wave (EW) reflection and transmission. For investigating its feasibility in AIS detection, 16 rabbits were chosen to establish AIS models by bilateral common carotid artery ligation and then were enrolled for monitoring experiments. RESULTS: During the 6 h after AIS, the reflection amplitude (RA) shows a decline trend with a range of 0.69 dB and reflection phase (RP) has an increased variation of 6.48° . Meanwhile, transmission amplitude (TA) and transmission phase (TP) decrease 2.14 dB and 24.29° , respectively. The statistical analysis illustrates that before ligation, 3 h after ligation and 6 h after ligation can be effectively distinguished by the four parameters individually. When all those parameters are regarded as recognition features in back propagation (BP) network, the classification accuracy of the three different periods reaches almost 100%. CONCLUSION: These results prove the feasibility of multi-parameter NFC sensing to assess AIS, which is promised to become an outstanding point-of-care testing method in the future.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Animais , Artérias Carótidas , Cuidados Críticos , Humanos , Monitorização Fisiológica , Coelhos , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/terapia
7.
PeerJ ; 9: e10583, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33505798

RESUMO

Intracranial hemorrhage (ICH) carrying extremely high morbidity and mortality can only be detected by CT, MRI and other large equipment, which do not meet the requirements for bedside continuous monitoring and pre-hospital first aid. Since the biological tissues have different dielectric properties except the pure resistances, and the permittivity of blood is far larger than that of other brain tissues, here a new method was used to detect events of change at the blood/tissue volume ratio by measuring of the head permittivity. In this paper, we use a self-made parallel plate capacitor to detect the intracranial hemorrhage in rabbits by contactless capacitance measurement. The sensitivity of the parallel-plate capacitor was also evaluated by the physical solution measurement. The results of physical experiments show that the capacitor can distinguish between three solutions with different permittivity, and the capacitance increased with the increase of one solution between two plates. At the next step in the animal experiment, the capacitance changes caused by 2 ml blood injection into the rabbit brain were measured. The results of animal experiments show that the capacitance was almost unchanged before and after the blood injection, but increased with the increase of the blood injection volume. The increase of capacitance caused by blood injection was much larger than that before and after blood injection (P < 0.01). The experiments show that this method is feasible for the detection of intracranial hemorrhage in a non-invasive and contactless manner.

8.
Technol Health Care ; 29(5): 963-978, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33427707

RESUMO

BACKGROUND: As a common secondary pathophysiological process in postischemic stroke (IS), cytotoxic brain edema (CBE) is an independent factor leading to poor prognosis of patients. Near-field coupling (NFC) technology has some advantages such as non-invasive, non-contact, and unimpeded penetration of the skull. In theory, it can reflect the difference between normal and edema tissues through the near-field coupling phase shift (NFCPS) in the electromagnetic wave transmission trait. METHODS: Combining NFC detection principle and computer programming, we established a high-performance real-time monitoring system with functions such as automatic setting of measurement parameters, data acquisition, real-time filtering and dynamic waveform display. To investigate the feasibility of this system to detect CBE, a saline simulation experiment and a 24-hour real-time monitoring experiment after middle cerebral artery occlusion (MCAO) in rats were carried out. RESULTS: The results of the saline simulation experiment showed that the change of NFCPS was proportional to the increase of the simulated edema solution, and the variation range of NFCPS was more than 9∘ after 5 ml injection. In the 24-hour monitoring after MCAO, the NFCPS of the experimental group showed an overall downward trend over time an average change of -17.7868 ± 1.6325∘ and the change rate gradually decreased. The 24-hour NFCPS in the control group fluctuates slightly around the initial value, which has no obvious upward or downward trend. CONCLUSION: The intragroup and intergroup difference statistical analysis shows that NFCPS can effectively distinguish different intracranial pathophysiological states after IS. This work provides sufficient evidence and a technical basis for using NFCPS to monitor CBE in the future.


Assuntos
Edema Encefálico , Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Animais , Encéfalo , Isquemia Encefálica/complicações , Humanos , Infarto da Artéria Cerebral Média , Ratos , Acidente Vascular Cerebral/complicações
9.
BMC Neurol ; 21(1): 26, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33455585

RESUMO

BACKGROUND: To investigate the feasibility of intracranial pressure (ICP) monitoring after traumatic brain injury (TBI) by electromagnetic coupling phase sensing, we established a portable electromagnetic coupling phase shift (ECPS) test system and conducted a comparison with invasive ICP. METHODS: TBI rabbits' model were all synchronously monitored for 24 h by ECPS testing and invasive ICP. We investigated the abilities of the ECPS to detect targeted ICP by feature extraction and traditional classification decision algorithms. RESULTS: The ECPS showed an overall downward trend with a variation range of - 13.370 ± 2.245° as ICP rose from 11.450 ± 0.510 mmHg to 38.750 ± 4.064 mmHg, but its change rate gradually declined. It was greater than 1.5°/h during the first 6 h, then decreased to 0.5°/h and finally reached the minimum of 0.14°/h. Nonlinear regression analysis results illustrated that both the ECPS and its change rate decrease with increasing ICP post-TBI. When used as a recognition feature, the ability (area under the receiver operating characteristic curve, AUCs) of the ECPS to detect ICP ≥ 20 mmHg was 0.88 ± 0.01 based on the optimized adaptive boosting model, reaching the advanced level of current noninvasive ICP assessment methods. CONCLUSIONS: The ECPS has the potential to be used for noninvasive continuous monitoring of elevated ICP post-TBI.


Assuntos
Algoritmos , Lesões Encefálicas Traumáticas/complicações , Hipertensão Intracraniana/diagnóstico , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Animais , Fenômenos Eletromagnéticos , Hipertensão Intracraniana/etiologia , Masculino , Coelhos
10.
Sci Rep ; 10(1): 21647, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303768

RESUMO

The hemorrhagic and the ischemic types of stroke have similar symptoms in the early stage, but their treatments are completely different. The timely and effective discrimination of the two types of stroke can considerable improve the patients' prognosis. In this paper, a 16-channel and noncontact microwave-based stroke detection system was proposed and demonstrated for the potential differentiation of the hemorrhagic and the ischemic stroke. In animal experiments, 10 rabbits were divided into two groups. One group consisted of five cerebral hemorrhage models, and the other group consisted of five cerebral ischemia models. The two groups were monitored by the system to obtain the Euclidean distance transform value of microwave scattering parameters caused by pathological changes in the brain. The support vector machine was used to identify the type and the severity of the stroke. Based on the experiment, a discrimination accuracy of 96% between hemorrhage and ischemia stroke was achieved. Furthermore, the potential of monitoring the progress of intracerebral hemorrhage or ischemia was evaluated. The discrimination of different degrees of intracerebral hemorrhage achieved 86.7% accuracy, and the discrimination of different severities of ischemia achieved 94% accuracy. Compared with that with multiple channels, the discrimination accuracy of the stroke severity with a single channel was only 50% for the intracerebral hemorrhage and ischemia stroke. The study showed that the microwave-based stroke detection system can effectively distinguish between the cerebral hemorrhage and the cerebral ischemia models. This system is very promising for the prehospital identification of the stroke type due to its low cost, noninvasiveness, and ease of operation.


Assuntos
Micro-Ondas , Monitorização Fisiológica , Acidente Vascular Cerebral/fisiopatologia , Animais , Humanos , Coelhos , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/tratamento farmacológico , Máquina de Vetores de Suporte , Terapia Trombolítica
11.
Biomed Eng Online ; 19(1): 83, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33176808

RESUMO

BACKGROUND: As a serious clinical disease, ischemic stroke is usually detected through magnetic resonance imaging and computed tomography. In this study, a noninvasive, non-contact, real-time continuous monitoring system was constructed on the basis of magnetic induction phase shift (MIPS) technology. The "thrombin induction method", which conformed to the clinical pathological development process of ischemic stroke, was used to construct an acute focal cerebral ischemia model of rabbits. In the MIPS measurement, a "symmetric cancellation-type" magnetic induction sensor was used to improve the sensitivity and antijamming capability of phase detection. METHODS: A 24-h MIPS monitoring experiment was carried out on 15 rabbits (10 in the experimental group and five in the control group). Brain tissues were taken from seven rabbits for the 2% triphenyl tetrazolium chloride staining and verification of the animal model. RESULTS: The nonparametric independent-sample Wilcoxon rank sum test showed significant differences (p < 0.05) between the experimental group and the control group in MIPS. Results showed that the rabbit MIPS presented a declining trend at first and then an increasing trend in the experimental group, which may reflect the pathological development process of cerebral ischemic stroke. Moreover, TTC staining results showed that the focal cerebral infarction area increased with the development of time CONCLUSIONS: Our experimental study indicated that the MIPS technology has a potential ability of differentiating the development process of cytotoxic edema from that of vasogenic edema, both of which are caused by cerebral ischemia.


Assuntos
Hemorragia Cerebral/fisiopatologia , Condutividade Elétrica , Fenômenos Magnéticos , Monitorização Fisiológica/métodos , Doença Aguda , Animais , Coelhos , Fatores de Tempo
12.
PeerJ ; 8: e10079, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33083136

RESUMO

Cerebral edema (CE) is a non-specific pathological swelling of the brain secondary to any type of neurological injury. The real-time monitoring of focal CE mostly found in early stage is of great significance to reduce mortality and disability. Magnetic Induction Phase Shift (MIPS) is expected to achieve non-invasive continuous monitoring of CE. However, most existing MIPS sensors are made of hard materials which makes it difficult to accurately retrieve CE information. In this article, we designed a conformal two-coil structure and a single-coil structure, and studied their sensitivity map using finite element method (FEM). After that, the conformal MIPS sensor that is preferable for local CE monitoring was fabricated by flexible printed circuit (FPC). Next, physical experiments were conducted to investigate its performance on different levels of simulated CE solution volume, measurement distance, and bending. Subsequently, 14 rabbits were chosen to establish CE model and another three rabbits were selected as controls. The 24-hour MIPS real-time monitoring experiments was carried out to verify that the feasibility. Results showed a gentler attenuation trend of the conformal two-coil structure, compared with the single-coil structure. In addition, the novel flexible conformal MIPS sensor has a characteristic of being robust to bending according to the physical experiments. The results of animal experiments showed that the sensor can be used for CE monitoring. It can be concluded that this flexible conformal MIPS sensor is desirable for local focusing measurement of CE and subsequent multidimensional information extraction for predicting model. Also, it enables a much more comfortable environment for long-time bedside monitoring.

13.
Environ Int ; 133(Pt B): 105275, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31675563

RESUMO

After reviewing the species- and community-level ecological risk assessments (ERAs) of chemicals in the aquatic environment, the present study attempted to propose a third stage of ERA, i.e., the ecosystem-level ERA. Based on the species sensitivity distribution model (SSD) and thermodynamic theory, the exergy and biomass indicators of communities from various trophic levels (TLs) were introduced to improve ecological connotation of SSDs. The species were classified into three TLs based on algae (TL1), invertebrates (TL2), and vertebrates (TL3), and the weight of each TL was determined based on relative biomass and ß value, which indicated a holistic contribution of each species or community to the ecosystem. Then, a system-level ERA protocol was successfully established, and the community- and system-level ecological risks of 10 typical toxic micro-organic pollutants in the western area of Lake Chaohu and its inflowing rivers were evaluated. System-level ERA curves (ExSSD) were mainly affected by the community-level SSD at TL2 for most chemicals in the present study. The uncertain boundary of ExSSD was mostly related to TLs with a wider uncertain boundary, but had little relation to the weight of each TL. The results of system-level ERAs revealed that dibutyl phthalate had the highest eco-risk, whereas γ-hexachlorocyclohexane presented the lowest eco-risk. Results of the system-level ERA were not fully consistent with the those of community-level ERA owing to the lack of a sufficient dataset, SSD model type, and ecosystem structure, as indicated by the weight of each TL. The successful application of ExSSD in Lake Chaohu signifies the start of the third stage of ERA at the system-level, and it also provides a scientific basis for ecosystem-level ERA, aquatic ecosystem protection, and future water safety management. However, there were some limitations, including sufficient data dependence, neglect of ecological interactions, and neglect of environmental parameters such as natural organic matter. We propose to employ toxicogenomics to enrich the toxicity database, to simulate the interaction using the ecological dynamic model, and to introduce the chemical fate model into the system-level ERA.


Assuntos
Ecossistema , Sulfadiazina de Prata/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Organismos Aquáticos/efeitos dos fármacos , Biomassa , Monitoramento Ambiental , Lagos/química , Modelos Teóricos , Medição de Risco , Rios/química , Sulfadiazina de Prata/química , Termodinâmica , Poluentes Químicos da Água/química
14.
Technol Health Care ; 27(S1): 273-285, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31045546

RESUMO

BACKGROUND: Cerebral edema is a common secondary disease after stroke. It is very important to realize real-time continuous monitoring of cerebral edema for stroke patients. OBJECTIVE: A non-contact magnetic induction phase shift (MIPS) detection system is used to monitor the change of global brain electrical conductivity during cerebral edema. METHODS: In order to verify the feasibility of this system monitoring, we carry out salt solution simulation experiments and healthy people breath holding experiments. As a comparison of later clinical experiments, 13 young healthy volunteers aged 22-35 are selected for this study to carry out a 10 minute/time monitoring experiment. RESULTS: It is found that the MIPS values measured by the salt solution of edema and the salt solution of bleeding are significantly different. The results show that the MIPS value of healthy young people is in a stable state with an MIPS mean value of 1.106 (± 0.736)∘. Compare it with the monitoring results of a cerebral edema patient. The MIPS of patient fluctuates greatly, and the changes of MIPS and intracranial pressure show consistent trend at the peak of the edema period. CONCLUSIONS: We preliminarily verify that the system can be used for cerebral edema monitoring.


Assuntos
Edema Encefálico/diagnóstico , Campos Eletromagnéticos , Voluntários Saudáveis , Monitorização Fisiológica/métodos , Adulto , Condutividade Elétrica , Estudos de Viabilidade , Feminino , Humanos , Pressão Intracraniana , Masculino , Monitorização Fisiológica/instrumentação , Adulto Jovem
15.
PeerJ ; 7: e6717, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30997290

RESUMO

Closed cerebral hemorrhage (CCH) is a common symptom in traumatic brain injury (TBI) patients who suffer intracranial hemorrhage with the dura mater remaining intact. The diagnosis of CCH patients prior to hospitalization and in the early stage of the disease can help patients get earlier treatments that improve outcomes. In this study, a noncontact, portable system for early TBI-induced CCH detection was constructed that measures the magnetic induction phase shift (MIPS), which is associated with the mean brain conductivity caused by the ratio between the liquid (blood/CSF and the intracranial tissues) change. To evaluate the performance of this system, a rabbit CCH model with two severity levels was established based on the horizontal biological impactor BIM-II, whose feasibility was verified by computed tomography images of three sections and three serial slices. There were two groups involved in the experiments (group 1 with 10 TBI rabbits were simulated by hammer hit with air pressure of 600 kPa by BIM-II and group 2 with 10 TBI rabbits were simulated with 650 kPa). The MIPS values of the two groups were obtained within 30 min before and after injury. In group 1, the MIPS values showed a constant downward trend with a minimum value of -11.17 ± 2.91° at the 30th min after 600 kPa impact by BIM-II. After the 650 kPa impact, the MIPS values in group 2 showed a constant downward trend until the 25th min, with a minimum value of -16.81 ± 2.10°. Unlike group 1, the MIPS values showed an upward trend after that point. Before the injury, the MIPS values in both group 1 and group 2 did not obviously change within the 30 min measurement. Using a support vector machine at the same time point after injury, the classification accuracy of the two types of severity was shown to be beyond 90%. Combined with CCH pathological mechanisms, this system can not only achieve the detection of early functional changes in CCH but can also distinguish different severities of CCH.

16.
Glob Chang Biol ; 23(2): 737-754, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27391103

RESUMO

Quantitative evidence of sudden shifts in ecological structure and function in large shallow lakes is rare, even though they provide essential benefits to society. Such 'regime shifts' can be driven by human activities which degrade ecological stability including water level control (WLC) and nutrient loading. Interactions between WLC and nutrient loading on the long-term dynamics of shallow lake ecosystems are, however, often overlooked and largely underestimated, which has hampered the effectiveness of lake management. Here, we focus on a large shallow lake (Lake Chaohu) located in one of the most densely populated areas in China, the lower Yangtze River floodplain, which has undergone both WLC and increasing nutrient loading over the last several decades. We applied a novel methodology that combines consistent evidence from both paleolimnological records and ecosystem modeling to overcome the hurdle of data insufficiency and to unravel the drivers and underlying mechanisms in ecosystem dynamics. We identified the occurrence of two regime shifts: one in 1963, characterized by the abrupt disappearance of submerged vegetation, and another around 1980, with strong algal blooms being observed thereafter. Using model scenarios, we further disentangled the roles of WLC and nutrient loading, showing that the 1963 shift was predominantly triggered by WLC, whereas the shift ca. 1980 was attributed to aggravated nutrient loading. Our analysis also shows interactions between these two stressors. Compared to the dynamics driven by nutrient loading alone, WLC reduced the critical P loading and resulted in earlier disappearance of submerged vegetation and emergence of algal blooms by approximately 26 and 10 years, respectively. Overall, our study reveals the significant role of hydrological regulation in driving shallow lake ecosystem dynamics, and it highlights the urgency of using multi-objective management criteria that includes ecological sustainability perspectives when implementing hydrological regulation for aquatic ecosystems around the globe.


Assuntos
Ecossistema , Eutrofização , Lagos , China , Humanos , Hidrologia
17.
Environ Sci Pollut Res Int ; 23(11): 10335-10348, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26728291

RESUMO

Surface sediment from large and eutrophic Lake Chaohu was investigated to determine the occurrence, spatial distribution, sources, and risks of polychlorinated biphenyls (PCBs) and heavy metals in one of the five biggest freshwater lakes in China. Total concentration of PCBs (Σ34PCBs) in Lake Chaohu was 672 pg g(-1) dry weight (dw), with a range of 7 to 3999 pg g(-1) dw, which was lower than other water bodies worldwide. The majority of heavy metals were detected at all sampling locations, except for Sr, B, and In. Concentrations of Al, Fe, Ca, Mn, Sr, Co, Zn, Cd, Pb, and Hg were similar to that reported for other lakes globally. Concentrations of K, Mg, Na, Li, Ga, and Ag were greater than the average, whereas those of Cr, Ni, and Cu were lower. Cluster analysis (CA) and positive matrix factorization (PMF) yielded accordant results for the source apportionment of PCBs. The technical PCBs and microbial degradation accounted for 34.2 % and 65.8 % of total PCBs using PMF, and PMF revealed that natural and anthropogenic sources of heavy metals accounted for 38.1 % and 61.8 %, respectively. CA indicated that some toxic heavy metals (e.g., Cd, In, Tl, and Hg) were associated with Ca-Na-Mg minerals rather than Fe-Mn minerals. The uncorrelated results between organic matter revealed by pyrolysis technology and heavy metals might be caused by the existence of competitive adsorption between organic matter and minerals. PCBs and heavy metals were coupling discharge without organochlorine pesticides (OCPs), but with polycyclic aromatic hydrocarbons (PAHs) and polybrominated diphenyl ethers (PBDEs). No sediment sample exceeded the toxic threshold for dioxin-like PCBs (dl-PCBs) set at 20 pg toxicity equivalency quantity (TEQ) g(-1), (max dl-PCBs, 10.9 pg TEQ g(-1)). However, concentrations of Ag, Cd, and Hg were at levels of environmental concern. The sediment in the drinking water source area (DWSA) was threatened by heavy metals from other areas, and some fundamental solutions were proposed to protect the DWSA.


Assuntos
Sedimentos Geológicos/análise , Lagos/química , Metais Pesados/análise , Bifenilos Policlorados/análise , Poluentes Químicos da Água/análise , China , Dioxinas/análise , Água Potável/análise , Monitoramento Ambiental/métodos , Eutrofização , Éteres Difenil Halogenados/análise , Intoxicação por Metais Pesados , Hidrocarbonetos Clorados/análise , Intoxicação , Hidrocarbonetos Policíclicos Aromáticos , Medição de Risco
18.
Environ Pollut ; 192: 232-43, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24703896

RESUMO

Atmospheric polybrominated diphenyl ethers (PBDEs) were monitored monthly from 2010 to 2013 at rural and urban sites near a large shallow Chinese lake (Lake Chaohu). The urban areas had higher air PBDEs than the rural areas because of endogenic pollution. The highest and lowest concentrations of Σ13BDEs were observed in the winter and in the summer, respectively. A weak temperature dependence and significant positive correlations between certain PBDE congeners and the PM10 (p < 0.01) suggest transport with particulate matter. Using air-mass back-trajectories, we determined that the main sources of the PBDEs were the areas to the north, such as Shandong Province, and to the east, such as Zhejiang Province. PBDEs did not pose an appreciable risk to human health based on the inhalation exposure assessment. The residents in urban areas were exposed to higher levels of PBDEs, and wintertime exposures posed the greatest human health risk.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Atmosfera/química , Monitoramento Ambiental , Éteres Difenil Halogenados/análise , Exposição por Inalação/estatística & dados numéricos , China , Humanos , Lagos , Material Particulado/análise , População Rural , Estações do Ano , População Urbana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA