RESUMO
Capacity degradation and destructive hazards are two major challenges for the operation of lithium-ion batteries at high temperatures. Although adding flame retardants or fire extinguishing agents can provide one-off self-protection in case of emergency overheating, it is desirable to directly regulate battery operation according to the temperature. Herein, smart self-protecting aqueous lithium-ion batteries are developed using thermos-responsive separators prepared through in situ polymerization on the hydrophilic separator. The thermos-responsive separator blocks the lithium ion transport channels at high temperature and reopens when the battery cools down; more importantly, this transition is reversible. The influence of lithium salts on the thermos-responsive behaviors of the hydrogels is investigated. Then suitable lithium salt (LiNO3 ) and concentration (1 m) are selected in the electrolyte to achieve self-protection without sacrificing battery performance. The shut-off temperature can be tuned from 30 to 80 °C by adjusting the hydrophilic and hydrophobic moiety ratio in the hydrogel for targeted applications. This self-protecting LiMn2 O4 /carbon coated LiTi2 (PO4 )3 (LMO/C-LTP) battery shows promise for smart energy storage devices with high safety and extended lifespan in case of high operating temperatures.
RESUMO
Metal sulfides are often used as cathode materials for lithium-ion batteries (LIBs) owing to their high theoretical specific capacity; however, excessively fast capacity decay during charging/discharging and rapid shedding during cycling limits their practical application in batteries. In this study, we proposed a strategy using plasma treatment combined with the solvothermal method to prepare cobalt sulfide (Co1-xS)-carbon nanofibers (CNFs) composite. The plasma treatment could introduce oxygen-containing polar groups and defects, which could improve the hydrophilicity of the CNFs for the growth of the Co1-xS, thereby increasing the specific capacity of the composite electrode. The results show that the composite electrode present a high discharge specific capacity (839 mAh g-1at a current density of 100 mA g-1) and good cycle stability (the capacity retention rate almost 100% at 2000 mA g-1after 500 cycles), attributing to the high conductivity of the CNFs. This study proves the application of plasma treatment and simple vulcanization method in high-performance LIBs.
RESUMO
Lithium sulfur (Li-S) batteries are considered as one of the most promising next generation energy storage systems, whereas their intrinsic drawbacks impeded their practical implementation. Herein, a nitrogen doped porous carbon polyhedron coupled with a well distributed α-CoS/Co heterostructure mediator was designed and prepared as the sulfur cathode host for lithium sulfur batteries. The α-CoS/Co heterostructure on a nitrogen doped carbon polyhedron (NCP) not only provides a strong adsorption interaction towards soluble polysulfides, but more importantly, also promotes the fast conversion of polysulfides to insoluble products, chemically suppressing the shuttling of polysulfides through the simultaneous advantages of α-CoS and Co. As a result, the α-CoS/Co-NCP-S cathode exhibits high sulfur utilization with a 1611.4 mA h g-1 first discharge capacity and a well satisfactory redox cycling stability with a low capacity fade rate of 0.042% per cycle at 0.5 C for over 800 cycles. Moreover, the hybrid cathode delivers 860.2 mA h g-1 specific capacity for a high sulfur loading of 4.8 mg cm-2 with remarkable cycling performance.