Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 10714, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730250

RESUMO

A prompt diagnosis of breast cancer in its earliest phases is necessary for effective treatment. While Computer-Aided Diagnosis systems play a crucial role in automated mammography image processing, interpretation, grading, and early detection of breast cancer, existing approaches face limitations in achieving optimal accuracy. This study addresses these limitations by hybridizing the improved quantum-inspired binary Grey Wolf Optimizer with the Support Vector Machines Radial Basis Function Kernel. This hybrid approach aims to enhance the accuracy of breast cancer classification by determining the optimal Support Vector Machine parameters. The motivation for this hybridization lies in the need for improved classification performance compared to existing optimizers such as Particle Swarm Optimization and Genetic Algorithm. Evaluate the efficacy of the proposed IQI-BGWO-SVM approach on the MIAS dataset, considering various metric parameters, including accuracy, sensitivity, and specificity. Furthermore, the application of IQI-BGWO-SVM for feature selection will be explored, and the results will be compared. Experimental findings demonstrate that the suggested IQI-BGWO-SVM technique outperforms state-of-the-art classification methods on the MIAS dataset, with a resulting mean accuracy, sensitivity, and specificity of 99.25%, 98.96%, and 100%, respectively, using a tenfold cross-validation datasets partition.


Assuntos
Algoritmos , Neoplasias da Mama , Máquina de Vetores de Suporte , Humanos , Neoplasias da Mama/diagnóstico , Feminino , Mamografia/métodos , Diagnóstico por Computador/métodos
2.
PLoS One ; 19(1): e0295951, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38165976

RESUMO

The integration of artificial intelligence (AI) in diagnosing diabetic retinopathy, a major contributor to global vision impairment, is becoming increasingly pronounced. Notably, the detection of vision-threatening diabetic retinopathy (VTDR) has been significantly fortified through automated techniques. Traditionally, the reliance on manual analysis of retinal images, albeit slow and error-prone, constituted the conventional approach. Addressing this, our study introduces a novel methodology that amplifies the robustness and precision of the detection process. This is complemented by the groundbreaking Hierarchical Block Attention (HBA) and HBA-U-Net architecture, which notably propel attention mechanisms in image segmentation. This innovative model refines image processing without imposing excessive computational demands by honing in on individual pixel intricacies, spatial relationships, and channel-specific attention. Building upon this innovation, our proposed method employs a multi-stage strategy encompassing data pre-processing, feature extraction via a hybrid CNN-SVD model, and classification employing an amalgamation of Improved Support Vector Machine-Radial Basis Function (ISVM-RBF), DT, and KNN techniques. Rigorously tested on the IDRiD dataset classified into five severity tiers, the hybrid model yields remarkable performance, achieving a 99.18% accuracy, 98.15% sensitivity, and 100% specificity in VTDR detection, thus surpassing existing methods. These results underscore a more potent avenue for diagnosing and addressing this crucial ocular condition while underscoring AI's transformative potential in medical care, particularly in ophthalmology.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Humanos , Inteligência Artificial , Retinopatia Diabética/diagnóstico por imagem , Máquina de Vetores de Suporte , Interpretação de Imagem Assistida por Computador/métodos , Diagnóstico por Computador/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA