Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Exp Biol ; 223(Pt 21)2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-32978315

RESUMO

Coral reefs, one of the world's most productive and diverse ecosystems, are currently threatened by a variety of stressors that result in increased prevalence of both bleaching and disease. Therefore, understanding the molecular mechanisms involved in these responses is critical to mitigate future damage to the reefs. One group of genes that is potentially involved in cnidarian immunity and symbiosis is GTPases of immunity associated proteins (GIMAP). In vertebrates, this family of proteins is involved in regulating the fate of developing lymphocytes and interacts with proteins involved in apoptosis and autophagy. As apoptosis, autophagy and immunity have previously been shown to be involved in cnidarian symbiosis and disease, the goal of this research was to determine the role of cnidarian GIMAPs in these processes using the anemone Exaiptasia pallida To do so, GIMAP genes were characterized in the E. pallida genome and changes in gene expression were measured using qPCR in response to chemical induction of apoptosis, autophagy and treatment with the immune stimulant lipopolysaccharide (LPS) in both aposymbiotic and symbiotic anemones. The results revealed four GIMAP-like genes in E. pallida, referred to as Ep_GIMAPs Induction of apoptosis and autophagy resulted in a general downregulation of Ep_GIMAPs, but no significant changes were observed in response to LPS treatment. This indicates that Ep_GIMAPs may be involved in the regulation of apoptosis and autophagy, and therefore could play a role in cnidarian-dinoflagellate symbiosis. Overall, these results increase our knowledge on the function of GIMAPs in a basal metazoan.


Assuntos
Dinoflagellida , Anêmonas-do-Mar , Animais , Apoptose/genética , Autofagia/genética , Ecossistema , GTP Fosfo-Hidrolases , Anêmonas-do-Mar/genética , Simbiose
2.
Dev Comp Immunol ; 101: 103459, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31377102

RESUMO

Coral disease is a major threat to reef ecosystems and therefore, understanding the cellular pathways underlying disease progression and resistance is critical to mitigating future outbreaks. This study focused on tyrosinase-like proteins in cnidarians, which contribute to melanin synthesis, an invertebrate innate immune defense. Specifically, characterization and phylogenetic analysis of cnidarian tyrosinases were performed, and their role in symbiosis and a "mystery disease" in the anemone Exaiptasia pallida was investigated using qPCR. The results reveal a diversity of tyrosinase-like proteins in cnidarians that separate into two major clades on a phylogenetic tree, suggesting functional divergence. Two E. pallida sequences, Ep_Tyr1 and Ep_Tyr2, were further investigated, and qPCR results revealed no gene expression differences as a function of symbiotic state, but decreased expression in late disease stages. Overall this work provides evidence for the participation of tyrosinases in the cnidarian immune response.


Assuntos
Monofenol Mono-Oxigenase/imunologia , Anêmonas-do-Mar/imunologia , Animais , Monofenol Mono-Oxigenase/genética , Anêmonas-do-Mar/genética , Anêmonas-do-Mar/microbiologia , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA