Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 8(1): 892, 2017 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-29026077

RESUMO

The charge ordered structure of ions and vacancies characterizing rare-earth pyrochlore oxides serves as a model for the study of geometrically frustrated magnetism. The organization of magnetic ions into networks of corner-sharing tetrahedra gives rise to highly correlated magnetic phases with strong fluctuations, including spin liquids and spin ices. It is an open question how these ground states governed by local rules are affected by disorder. Here we demonstrate in the pyrochlore Tb2Hf2O7, that the vicinity of the disordering transition towards a defective fluorite structure translates into a tunable density of anion Frenkel disorder while cations remain ordered. Quenched random crystal fields and disordered exchange interactions can therefore be introduced into otherwise perfect pyrochlore lattices of magnetic ions. We show that disorder can play a crucial role in preventing long-range magnetic order at low temperatures, and instead induces a strongly fluctuating Coulomb spin liquid with defect-induced frozen magnetic degrees of freedom.Experimental studies of frustrated spin systems such as pyrochlore magnetic oxides test our understanding of quantum many-body physics. Here the authors show experimentally that Tb2Hf2O7 may be a model material for investigating how structural disorder can stabilize a quantum spin liquid phase.

2.
Phys Rev Lett ; 115(9): 097202, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26371677

RESUMO

We report the low-temperature magnetic properties of Ce2Sn2O7, a rare-earth pyrochlore. Our susceptibility and magnetization measurements show that due to the thermal isolation of a Kramers doublet ground state, Ce2Sn2O7 has Ising-like magnetic moments of ∼1.18 µ_{B}. The magnetic moments are confined to the local trigonal axes, as in a spin ice, but the exchange interactions are antiferromagnetic. Below 1 K, the system enters a regime with antiferromagnetic correlations. In contrast to predictions for classical ⟨111⟩-Ising spins on the pyrochlore lattice, there is no sign of long-range ordering down to 0.02 K. Our results suggest that Ce2Sn2O7 features an antiferromagnetic liquid ground state with strong quantum fluctuations.

3.
Phys Rev Lett ; 113(24): 247601, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25541804

RESUMO

The magnetic ground state of the J(eff)=1/2 hyperkagome lattice in Na4Ir3O8 is explored via combined bulk magnetization, muon spin relaxation, and neutron scattering measurements. A short-range, frozen state comprised of quasistatic moments develops below a characteristic temperature of T(F)=6 K, revealing an inhomogeneous distribution of spins occupying the entirety of the sample volume. Quasistatic, short-range spin correlations persist until at least 20 mK and differ substantially from the nominally dynamic response of a quantum spin liquid. Our data demonstrate that an inhomogeneous magnetic ground state arises in Na4Ir3O8 driven either by disorder inherent to the creation of the hyperkagome lattice itself or stabilized via quantum fluctuations.

4.
J Am Chem Soc ; 131(19): 6733-47, 2009 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-19290599

RESUMO

Three Cu(2+)-containing coordination polymers were synthesized and characterized by experimental (X-ray diffraction, magnetic susceptibility, pulsed-field magnetization, heat capacity, and muon-spin relaxation) and electronic structure studies (quantum Monte Carlo simulations and density functional theory calculations). [Cu(HF(2))(pyz)(2)]SbF(6) (pyz = pyrazine) (1a), [Cu(2)F(HF)(HF(2))(pyz)(4)](SbF(6))(2) (1b), and [CuAg(H(3)F(4))(pyz)(5)](SbF(6))(2) (2) crystallize in either tetragonal or orthorhombic space groups; their structures consist of 2D square layers of [M(pyz)(2)](n+) that are linked in the third dimension by either HF(2)(-) (1a and 1b) or H(3)F(4)(-) (2). The resulting 3D frameworks contain charge-balancing SbF(6)(-) anions in every void. Compound 1b is a defective polymorph of 1a, with the difference being that 50% of the HF(2)(-) links are broken in the former, which leads to a cooperative Jahn-Teller distortion and d(x(2))(-y(2)) orbital ordering. Magnetic data for 1a and 1b reveal broad maxima in chi at 12.5 and 2.6 K and long-range magnetic order below 4.3 and 1.7 K, respectively, while 2 displays negligible spin interactions owing to long and disrupted superexchange pathways. The isothermal magnetization, M(B), for 1a and 1b measured at 0.5 K reveals contrasting behaviors: 1a exhibits a concave shape as B increases to a saturation field, B(c), of 37.6 T, whereas 1b presents an unusual two-step saturation in which M(B) is convex until it reaches a step near 10.8 T and then becomes concave until saturation is reached at 15.8 T. The step occurs at two-thirds of M(sat), suggesting the presence of a ferrimagnetic structure. Compound 2 shows unusual hysteresis in M(B) at low temperature, although chi vs T does not reveal the presence of a magnetic phase transition. Quantum Monte Carlo simulations based on an anisotropic cubic lattice were applied to the magnetic data of 1a to afford g = 2.14, J = -13.4 K (Cu-pyz-Cu), and J(perpendicular) = -0.20 K (Cu-F...H...F-Cu), while chi vs T for 1b could be well reproduced by a spin-1/2 Heisenberg uniform chain model for g = 2.127(1), J(1) = -3.81(1), and zJ(2) = -0.48(1) K, where J(1) and J(2) are the intra- and interchain exchange couplings, respectively, which considers the number of magnetic nearest-neighbors (z). The M(B) data for 1b could not be satisfactorily explained by the chain model, suggesting a more complex magnetic structure in the ordered state and the need for additional terms in the spin Hamiltonian. The observed variation in magnetic behaviors is driven by differences in the H...F hydrogen-bonding motifs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA