Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 326(2): L125-L134, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38084404

RESUMO

Cystic fibrosis-related diabetes (CFRD) affects 40%-50% of adults with CF and is associated with a decline in respiratory health. The microbial flora of the lung is known to change with the development of CF disease, but how CFRD affects the microbiome has not been described. We analyzed the microbiome in sputa from 14 people with CF, 14 with CFRD, and two who were classed as pre-CFRD by extracting DNA and amplifying the variable V3-V4 region of the microbial 16S ribosomal RNA gene by PCR. Sequences were analyzed and sources were identified to genus level. We found that the α-diversity of the microbiome using Shannon's diversity index was increased in CFRD compared with CF. Bray Curtis dissimilarity analysis showed that there was separation of the microbiomes in CF and CFRD sputa. The most abundant phyla identified in the sputum samples were Firmicutes and Proteobacteria, Actinobacteriota and Bacteroidota, and the ratio of Firmicutes/Bacteroidota was reduced in CFRD compared with CF. Pseudomonas, Azhorizophilus, Porphyromonas, and Actinobacillus were more abundant in CFRD compared with CF, whereas Staphylococcus was less abundant. The relative abundance of these genera did not correlate with age; some correlated with a decline in FEV1/FVC but all correlated with hemoglobin A1C (HbA1c) indicating that development of CFRD mediates further changes to the respiratory microbiome in CF.NEW & NOTEWORTHY Cystic fibrosis-related diabetes (CFRD) is associated with a decline in respiratory health. We show for the first time that there was a change in the sputum microbiome of people with CFRD compared with CF that correlated with markers of raised blood glucose.


Assuntos
Fibrose Cística , Diabetes Mellitus , Microbiota , Adulto , Humanos , Fibrose Cística/complicações , Fibrose Cística/microbiologia , Escarro , Pulmão/microbiologia
2.
Mol Ther Methods Clin Dev ; 31: 101140, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38027060

RESUMO

Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the CFTR gene. The 10th most common mutation, c.3178-2477C>T (3849+10kb C>T), involves a cryptic, intronic splice site. This mutation was corrected in CF primary cells homozygous for this mutation by delivering pairs of guide RNAs (gRNAs) with Cas9 protein in ribonucleoprotein (RNP) complexes that introduce double-strand breaks to flanking sites to excise the 3849+10kb C>T mutation, followed by DNA repair by the non-homologous end-joining pathway, which functions in all cells of the airway epithelium. RNP complexes were delivered to CF basal epithelial cell by a non-viral, receptor-targeted nanocomplex comprising a formulation of targeting peptides and lipids. Canonical CFTR mRNA splicing was, thus, restored leading to the restoration of CFTR protein expression with concomitant restoration of electrophysiological function in airway epithelial air-liquid interface cultures. Off-target editing was not detected by Sanger sequencing of in silico-selected genomic sites with the highest sequence similarities to the gRNAs, although more sensitive unbiased whole genome sequencing methods would be required for possible translational developments. This approach could potentially be used to correct aberrant splicing signals in several other CF mutations and other genetic disorders where deep-intronic mutations are pathogenic.

3.
PLoS One ; 18(7): e0287183, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37406028

RESUMO

Airway diseases can disrupt tight junction proteins, compromising the epithelial barrier and making it more permeable to pathogens. In people with pulmonary disease who are prone to infection with Pseudomonas aeruginosa, pro-inflammatory leukotrienes are increased and anti-inflammatory lipoxins are decreased. Upregulation of lipoxins is effective in counteracting inflammation and infection. However, whether combining a lipoxin receptor agonist with a specific leukotriene A4 hydrolase (LTA4H) inhibitor could enhance these protective effects has not to our knowledge been investigated. Therefore, we explored the effect of lipoxin receptor agonist BML-111 and JNJ26993135 a specific LTA4H inhibitor that prevents the production of pro-inflammatory LTB4 on tight junction proteins disrupted by P. aeruginosa filtrate (PAF) in human airway epithelial cell lines H441 and 16HBE-14o. Pre-treatment with BML-111 prevented an increase in epithelial permeability induced by PAF and conserved ZO-1 and claudin-1 at the cell junctions. JNJ26993135 similarly prevented the increased permeability induced by PAF, restored ZO-1 and E-cadherin and reduced IL-8 but not IL-6. Cells pre-treated with BML-111 plus JNJ26993135 restored TEER and permeability, ZO-1 and claudin-1 to the cell junctions. Taken together, these data indicate that the combination of a lipoxin receptor agonist with a LTA4H inhibitor could provide a more potent therapy.


Assuntos
Lipoxinas , Junções Íntimas , Humanos , Junções Íntimas/metabolismo , Pseudomonas aeruginosa/metabolismo , Claudina-1/metabolismo , Células Epiteliais/metabolismo , Proteínas de Junções Íntimas/metabolismo
4.
Cells ; 12(7)2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-37048070

RESUMO

Primary human bronchial epithelial cultures (HBECs) are used to study airway physiology, disease, and drug development. HBECs often replicate human airway physiology/pathophysiology. Indeed, in the search for cystic fibrosis (CF) transmembrane conductance regulator (CFTR) therapies, HBECs were seen as the "gold standard" in preclinical studies. However, HBECs are not without their limitations: they are non-immortalized and the requirement for human donors, especially those with rare genetic mutations, can make HBECs expensive and/or difficult to source. For these reasons, researchers may opt to expand HBECs by passaging. This practice is common, but to date, there has not been a robust analysis of the impact of expanding HBECs on their phenotype. Here, we used functional studies of airway surface liquid (ASL) homeostasis, epithelial barrier properties, and RNA-seq and Western blotting to investigate HBEC changes over two passage cycles. We found that passaging impaired CFTR-mediated ASL secretion and led to a reduction in the plasma membrane expression of the epithelial sodium channel (ENaC) and CFTR. Passaging also resulted in an increase in transepithelial resistance and a decrease in epithelial water permeability. We then looked for changes at the mRNA level and found that passaging significantly affected 323 genes, including genes involved in inflammation, cell growth, and extracellular matrix remodeling. Collectively, these data highlight the potential for HBEC expansion to impact research findings.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/metabolismo , Transporte Biológico , Transporte de Íons , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
Am J Physiol Cell Physiol ; 324(1): C153-C166, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36409177

RESUMO

New technologies such as single-cell RNA sequencing (scRNAseq) has enabled identification of the mRNA transcripts expressed by individual cells. This review provides insight from recent scRNAseq studies on the expression of glucose transporters in the epithelial cells of the airway epithelium from trachea to alveolus. The number of studies analyzed was limited, not all reported the full range of glucose transporters and there were differences between cells freshly isolated from the airways and those grown in vitro. Furthermore, glucose transporter mRNA transcripts were expressed at lower levels than other epithelial marker genes. Nevertheless, these studies highlighted that there were differences in cellular expression of glucose transporters. GLUT1 was the most abundant of the broadly expressed transporters that included GLUT8, 10, and 13. GLUT9 transcripts were more common in basal cells and GLUT12 in ionocytes/ciliated cells. In addition to alveolar cells, SGLT1 transcripts were present in secretory cells. GLUT3 mRNA transcripts were expressed in a cell cluster that expressed monocarboxylate (MCT2) transporters. Such distributions likely underlie cell-specific metabolic requirements to support proliferation, ion transport, mucous secretion, environment sensing, and airway glucose homeostasis. These studies have also highlighted the role of glucose transporters in the movement of dehydroascorbic acid/vitamin C/myoinositol/urate, which are factors important to the innate immune properties of the airways. Discrepancies remain between detection of mRNAs, protein, and function of glucose transporters in the lungs. However, collation of the data from further scRNAseq studies may provide a better consensus and understanding, supported by qPCR, immunohistochemistry, and functional experiments.


Assuntos
Células Epiteliais , Proteínas Facilitadoras de Transporte de Glucose , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Células Epiteliais/metabolismo , Epitélio/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Glucose/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo
6.
Am J Physiol Cell Physiol ; 321(6): C954-C963, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34613844

RESUMO

Airway secretions contain many signaling molecules and peptides/proteins that are not found in airway surface liquid (ASL) generated by normal human bronchial epithelial cells (NHBEs) in vitro. These play a key role in innate defense and mediate communication between the epithelium, the immune cells, and the external environment. We investigated how culture of NHBE with apically applied secretions from healthy or diseased (cystic fibrosis, CF) lungs affected epithelial function with a view to providing better in vitro models of the in vivo environment. NHBEs from 6 to 8 different donors were cultured at air-liquid interface (ALI), with apically applied sputum from normal healthy donors (normal lung sputum; NLS) or CF donors (CFS) for 2-4 h, 48 h, or with sputum reapplied over 48 h. Proteomics analysis was carried out on the sputa and on the NHBE ASL before and after culture with sputa. Transepithelial electrical resistance (TEER), short circuit current (Isc), and changes to ASL height were measured. There were 71 proteins common to both sputa but not ASL. The protease:protease inhibitor balance was increased in CFS compared with NLS and ASL. Culture of NHBE with sputa for 48 h identified additional factors not present in NLS, CFS, or ASL alone. Culture with either NLS or CFS for 48 h increased cystic fibrosis transmembrane regulator (CFTR) activity, calcium-activated chloride channel (CaCC) activity, and changed ASL height. These data indicate that culture with healthy or disease sputum changes the proteomic profile of ASL and ion transport properties of NHBE and this may increase physiological relevance when using in vitro airway models.


Assuntos
Brônquios/metabolismo , Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteoma , Proteômica , Escarro/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Fibrose Cística/diagnóstico , Impedância Elétrica , Humanos , Transporte de Íons , Fatores de Tempo
7.
PLoS One ; 16(7): e0254248, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34242292

RESUMO

We have modified the periplasmic Escherichia coli glucose/galactose binding protein (GBP) and labelled with environmentally sensitive fluorophores to further explore its potential as a sensor for the evaluation of glucose concentration in airway surface liquid (ASL). We identified E149C/A213R GBP labelled with N,N'-Dimethyl-N-(iodoacetyl)-N'-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)ethylenediamine (IANBD, emission wavelength maximum 536nm) with a Kd for D-glucose of 1.02mM and a fluorescence dynamic range of 5.8. This sensor was specific for D-glucose and exhibited fluorescence stability in experiments for several hours. The use of E149C/A213R GBP-IANBD in the ASL of airway cells grown at air-liquid-interface (ALI) detected an increase in glucose concentration 10 minutes after raising basolateral glucose from 5 to 15mM. This sensor also reported a greater change in ASL glucose concentration in response to increased basolateral glucose in H441 airway cells compared to human bronchial epithelial cells (HBEC) and there was less variability with HBEC data than that of H441 indicating that HBEC more effectively regulate glucose movement into the ASL. The sensor detected glucose in bronchoalveolar lavage fluid (BALf) from diabetic db/db mice but not normoglycaemic wildtype mice, indicating limited sensitivity of the sensor at glucose concentrations <50µM. Using nasal inhalation of the sensor and spectral unmixing to generate images, E149C/A213R GBP-IANBD fluorescence was detected in luminal regions of cryosections of the murine distal lung that was greater in db/db than wildtype mice. In conclusion, this sensor provides a useful tool for further development to measure luminal glucose concentration in models of lung/airway to explore how this may change in disease.


Assuntos
Técnicas Biossensoriais , Glucose , Animais , Proteínas de Ligação ao Cálcio , Células Epiteliais , Camundongos , Proteínas de Transporte de Monossacarídeos , Proteínas Periplásmicas de Ligação
8.
Biosci Rep ; 41(6)2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34003249

RESUMO

BACKGROUND: In the kidney glucose is freely filtered by the glomerulus and, mainly, reabsorbed by sodium glucose cotransporter 2 (SGLT2) expressed in the early proximal tubule. Human proximal tubule epithelial cells (PTECs) undergo pathological and fibrotic changes seen in diabetic kidney disease (DKD) in response to elevated glucose. We developed a specific in vitro model of DKD using primary human PTECs with exposure to high D-glucose and TGF-ß1 and propose a role for SGLT2 inhibition in regulating fibrosis. METHODS: Western blotting was performed to detect cellular and secreted proteins as well as phosphorylated intracellular signalling proteins. qPCR was used to detect CCN2 RNA. Gamma glutamyl transferase (GT) activity staining was performed to confirm PTEC phenotype. SGLT2 and ERK inhibition on high D-glucose, 25 mM, and TGF-ß1, 0.75 ng/ml, treated cells was explored using dapagliflozin and U0126, respectively. RESULTS: Only the combination of high D-glucose and TGF-ß1 treatment significantly up-regulated CCN2 RNA and protein expression. This increase was significantly ameliorated by dapagliflozin. High D-glucose treatment raised phospho ERK which was also inhibited by dapagliflozin. TGF-ß1 increased cellular phospho SSXS Smad3 serine 423 and 425, with and without high D-glucose. Glucose alone had no effect. Smad3 serine 204 phosphorylation was significantly raised by a combination of high D-glucose+TGF-ß1; this rise was significantly reduced by both SGLT2 and MEK inhibition. CONCLUSIONS: We show that high D-glucose and TGF-ß1 are both required for CCN2 expression. This treatment also caused Smad3 linker region phosphorylation. Both outcomes were inhibited by dapagliflozin. We have identified a novel SGLT2 -ERK mediated promotion of TGF-ß1/Smad3 signalling inducing a pro-fibrotic growth factor secretion. Our data evince support for substantial renoprotective benefits of SGLT2 inhibition in the diabetic kidney.


Assuntos
Compostos Benzidrílicos/farmacologia , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Células Epiteliais/efeitos dos fármacos , Glucose/toxicidade , Glucosídeos/farmacologia , Túbulos Renais Proximais/efeitos dos fármacos , Proteína Smad2/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Células Cultivadas , Fator de Crescimento do Tecido Conjuntivo/genética , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibrose , Humanos , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Fosforilação , Transdução de Sinais , Fator de Crescimento Transformador beta1/farmacologia
10.
Am J Physiol Cell Physiol ; 317(5): C983-C992, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31433692

RESUMO

The airway epithelium maintains differential glucose concentrations between the airway surface liquid (ASL, ~0.4 mM) and the blood/interstitium (5-6 mM), which is important for defense against infection. Glucose primarily moves from the blood to the ASL via paracellular movement, down its concentration gradient, across the tight junctions. However, there is evidence that glucose can move transcellularly across epithelial cells. Using a Förster resonance energy transfer sensor for glucose, we investigated intracellular glucose concentrations in airway epithelial cells and the role of hexokinases in regulating intracellular glucose concentrations in normoglycemic and hyperglycemic conditions. Our findings indicated that in airway epithelial cells (H441 or primary human bronchial epithelial cells) exposed to 5 mM glucose (normoglycemia), intracellular glucose concentration is in the micromolar range. Inhibition of facilitative glucose transporters (GLUTs) with cytochalasin B reduced intracellular glucose concentration. When cells were exposed to 15 mM glucose (hyperglycemia), intracellular glucose concentration was reduced. Airway cells expressed hexokinases I, II, and III. Inhibition with 3-bromopyruvate decreased hexokinase activity by 25% and elevated intracellular glucose concentration, but levels remained in the micromolar range. Exposure to hyperglycemia increased glycolysis, glycogen, and sorbitol. Thus, glucose enters the airway cell via GLUTs and is then rapidly processed by hexokinase-dependent and hexokinase-independent metabolic pathways to maintain low intracellular glucose concentrations. We propose that this prevents transcellular transport and aids the removal of glucose from the ASL and that the main route of entry for glucose into the ASL is via the paracellular pathway.


Assuntos
Glucose/metabolismo , Hexoquinase/metabolismo , Hiperglicemia/metabolismo , Mucosa Respiratória/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Hexoquinase/antagonistas & inibidores , Humanos , Piruvatos/farmacologia , Mucosa Respiratória/efeitos dos fármacos
11.
J Cell Mol Med ; 23(1): 317-327, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30450773

RESUMO

Airway epithelial tight junction (TJ) proteins form a resistive barrier to the external environment, however, during respiratory bacterial infection TJs become disrupted compromising barrier function. This promotes glucose flux/accumulation into the lumen which acts as a nutrient source for bacterial growth. Metformin used for the treatment of diabetes increases transepithelial resistance (TEER) and partially prevents the effect of bacteria but the mechanisms of action are unclear. We investigated the effect of metformin and Staphylococcus aureus on TJ proteins, zonula occludins (ZO)-1 and occludin in human airway epithelial cells (H441). We also explored the role of AMP-activated protein kinase (AMPK) and PKCζ in metformin-induced effects. Pretreatment with metformin prevented the S. aureus-induced changes in ZO-1 and occludin. Metformin also promoted increased abundance of full length over smaller cleaved occludin proteins. The nonspecific PKC inhibitor staurosporine reduced TEER but did not prevent the effect of metformin indicating that the pathway may involve atypical PKC isoforms. Investigation of TJ reassembly after calcium depletion showed that metformin increased TEER more rapidly and promoted the abundance and localization of occludin at the TJ. These effects were inhibited by the AMPK inhibitor, compound C and the PKCζ pseudosubstrate inhibitor (PSI). Metformin increased phosphorylation of occludin and acetyl-coA-carboxylase but only the former was prevented by PSI. This study demonstrates that metformin improves TJ barrier function by promoting the abundance and assembly of full length occludin at the TJ and that this process involves phosphorylation of the protein via an AMPK-PKCζ pathway.


Assuntos
Metformina/farmacologia , Ocludina/metabolismo , Proteína Quinase C/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos , Linhagem Celular , Claudina-1/metabolismo , Células Epiteliais/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Fosforilação , Mucosa Respiratória/citologia , Mucosa Respiratória/microbiologia , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/patogenicidade , Proteínas de Junções Íntimas/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo
12.
Thorax ; 73(9): 847-856, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29748250

RESUMO

INTRODUCTION: Loss of the cystic fibrosis transmembrane conductance regulator in cystic fibrosis (CF) leads to hyperabsorption of sodium and fluid from the airway due to upregulation of the epithelial sodium channel (ENaC). Thickened mucus and depleted airway surface liquid (ASL) then lead to impaired mucociliary clearance. ENaC regulation is thus a promising target for CF therapy. Our aim was to develop siRNA nanocomplexes that mediate effective silencing of airway epithelial ENaC in vitro and in vivo with functional correction of epithelial ion and fluid transport. METHODS: We investigated translocation of nanocomplexes through mucus and their transfection efficiency in primary CF epithelial cells grown at air-liquid interface (ALI).Short interfering RNA (SiRNA)-mediated silencing was examined by quantitative RT-PCR and western analysis of ENaC. Transepithelial potential (Vt), short circuit current (Isc), ASL depth and ciliary beat frequency (CBF) were measured for functional analysis. Inflammation was analysed by histological analysis of normal mouse lung tissue sections. RESULTS: Nanocomplexes translocated more rapidly than siRNA alone through mucus. Transfections of primary CF epithelial cells with nanocomplexes targeting αENaC siRNA, reduced αENaC and ßENaC mRNA by 30%. Transfections reduced Vt, the amiloride-sensitive Isc and mucus protein concentration while increasing ASL depth and CBF to normal levels. A single dose of siRNA in mouse lung silenced ENaC by approximately 30%, which persisted for at least 7 days. Three doses of siRNA increased silencing to approximately 50%. CONCLUSION: Nanoparticle-mediated delivery of ENaCsiRNA to ALI cultures corrected aspects of the mucociliary defect in human CF cells and offers effective delivery and silencing in vivo.


Assuntos
Fibrose Cística/genética , Fibrose Cística/patologia , Canais Epiteliais de Sódio/genética , Inativação Gênica , RNA Interferente Pequeno , Transfecção/métodos , Animais , Técnicas de Cultura de Células , Modelos Animais de Doenças , Humanos , Camundongos , Nanopartículas
13.
Chest ; 153(2): 507-514, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28610911

RESUMO

In health, the glucose concentration of airway surface liquid (ASL) is 0.4 mM, about 12 times lower than the blood glucose concentration. Airway glucose homeostasis comprises a set of processes that actively maintain low ASL glucose concentration against the transepithelial gradient. Tight junctions between airway epithelial cells restrict paracellular glucose movement. Epithelial cellular glucose transport and metabolism removes glucose from ASL. Low ASL glucose concentrations make an important contribution to airway defense against infection, limiting bacterial growth by restricting nutrient availability. Both airway inflammation, which increases glucose permeability of tight junctions, and hyperglycemia, which increases the transepithelial glucose gradient, increase ASL glucose concentrations, with the greatest effect seen where they coexist. Elevated ASL glucose drives proliferation of bacteria able to use glucose as a carbon source, including Staphylococcus aureus, Pseudomonas aeruginosa, and other gram-negative bacteria. Clinically, this appears to be important in driving exacerbations of chronic lung disease, especially in patients with comorbid diabetes mellitus. Drugs can restore airway glucose homeostasis by reducing the permeability of tight junctions (eg, metformin), increasing epithelial cell glucose transport (eg, ß-agonists, insulin), and/or by lowering blood glucose (eg, dapagliflozin). In cell culture and animal models these reduce ASL glucose concentrations and limit bacterial growth, preventing infection. Observational studies in humans indicate that airway glucose homeostasis-modifying drugs could prevent chronic lung disease exacerbations if tested in randomized trials.


Assuntos
Glucose/metabolismo , Pneumopatias/tratamento farmacológico , Mucosa Respiratória/metabolismo , Infecções Respiratórias/tratamento farmacológico , Agonistas Adrenérgicos beta/uso terapêutico , Animais , Azitromicina/uso terapêutico , Glucocorticoides/uso terapêutico , Humanos , Hipoglicemiantes/uso terapêutico , Pneumopatias/metabolismo , PPAR gama/agonistas , Infecções Respiratórias/metabolismo , Infecções Respiratórias/microbiologia , Junções Íntimas/metabolismo , Vitamina D/uso terapêutico
14.
Br J Pharmacol ; 174(9): 836-847, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28192604

RESUMO

BACKGROUND AND PURPOSE: Hyperglycaemia increases glucose concentrations in airway surface liquid and increases the risk of pulmonary Pseudomonas aeruginosa infection. We determined whether reduction of blood and airway glucose concentrations by the anti-diabetic drug dapagliflozin could reduce P. aeruginosa growth/survival in the lungs of diabetic mice. EXPERIMENTAL APPROACH: The effect of dapagliflozin on blood and airway glucose concentration, the inflammatory response and infection were investigated in C57BL/6J (wild type, WT) or leptin receptor-deficient (db/db) mice, treated orally with dapagliflozin prior to intranasal dosing with LPS or inoculation with P. aeruginosa. Pulmonary glucose transport and fluid absorption were investigated in Wistar rats using the perfused fluid-filled lung technique. KEY RESULTS: Fasting blood, airway glucose and lactate concentrations were elevated in the db/db mouse lung. LPS challenge increased inflammatory cells in bronchoalveolar lavage fluid from WT and db/db mice with and without dapagliflozin treatment. P. aeruginosa colony-forming units (CFU) were increased in db/db lungs. Pretreatment with dapagliflozin reduced blood and bronchoalveolar lavage glucose concentrations and P. aeruginosa CFU in db/db mice towards those seen in WT. Dapagliflozin had no adverse effects on the inflammatory response in the mouse or pulmonary glucose transport or fluid absorption in the rat lung. CONCLUSION AND IMPLICATIONS: Pharmacological lowering of blood glucose with dapagliflozin effectively reduced P. aeruginosa infection in the lungs of diabetic mice and had no adverse pulmonary effects in the rat. Dapagliflozin has potential to reduce the use, or augment the effect, of antimicrobials in the prevention or treatment of pulmonary infection.


Assuntos
Compostos Benzidrílicos/uso terapêutico , Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Glucosídeos/uso terapêutico , Infecções por Pseudomonas/sangue , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Animais , Compostos Benzidrílicos/farmacologia , Glicemia/metabolismo , Líquido da Lavagem Broncoalveolar , Diabetes Mellitus Experimental/sangue , Glucosídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ratos , Ratos Wistar , Proteínas de Transporte de Sódio-Glucose/farmacologia , Proteínas de Transporte de Sódio-Glucose/uso terapêutico
15.
J Pulm Respir Med ; 2017(1)2017 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-29938126

RESUMO

Elevation of blood glucose results in increased glucose in the fluid that lines the surface of the airways and this is associated with an increased susceptibility to infection with respiratory pathogens. Infection induces an inflammatory response in the lung, but how this is altered by hyperglycemia and how this affects glucose, lactate and cytokine concentrations in the airway surface liquid is not understood. We used Wild Type (WT) and glucokinase heterozygote (GK+/-) mice to investigate the effect of hyperglycemia, with and without LPS-induced inflammatory responses, on airway glucose, lactate, inflammatory cells and cytokines measured in Bronchoalveolar Lavage Fluid (BALF). We found that glucose and lactate concentrations in BALF were elevated in GK+/- compared to WT mice and that there was a direct correlation between blood glucose and BALF glucose concentrations. LPS challenge increased BALF inflammatory cell numbers and this correlated with decreased glucose and increased lactate concentrations although the effect was less in GK+/- compared to WT mice. All cytokines measured (except IL-2) increased in BALF with LPS challenge. However, concentrations of TNFα, INFγ, IL-1ß and IL-2 were less in GK+/- compared to WT mice. This study shows that the normal glucose/lactate environment of the airway surface liquid is altered by hyperglycemia and the inflammatory response. These data indicate that inflammatory cells utilize BALF glucose and that production of lactate and cytokines is compromised in hyperglycemic GK+/- mice.

16.
Am J Physiol Lung Cell Mol Physiol ; 312(2): L258-L267, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27979861

RESUMO

Air-liquid interface (ALI) culture of primary airway epithelial cells enables mucociliary differentiation providing an in vitro model of the human airway, but their proliferative potential is limited. To extend proliferation, these cells were previously transduced with viral oncogenes or mouse Bmi-1 + hTERT, but the resultant cell lines did not undergo mucociliary differentiation. We hypothesized that use of human BMI-1 alone would increase the proliferative potential of bronchial epithelial cells while retaining their mucociliary differentiation potential. Cystic fibrosis (CF) and non-CF bronchial epithelial cells were transduced by lentivirus with BMI-1 and then their morphology, replication kinetics, and karyotype were assessed. When differentiated at ALI, mucin production, ciliary function, and transepithelial electrophysiology were measured. Finally, shRNA knockdown of DNAH5 in BMI-1 cells was used to model primary ciliary dyskinesia (PCD). BMI-1-transduced basal cells showed normal cell morphology, karyotype, and doubling times despite extensive passaging. The cell lines underwent mucociliary differentiation when cultured at ALI with abundant ciliation and production of the gel-forming mucins MUC5AC and MUC5B evident. Cilia displayed a normal beat frequency and 9+2 ultrastructure. Electrophysiological characteristics of BMI-1-transduced cells were similar to those of untransduced cells. shRNA knockdown of DNAH5 in BMI-1 cells produced immotile cilia and absence of DNAH5 in the ciliary axoneme as seen in cells from patients with PCD. BMI-1 delayed senescence in bronchial epithelial cells, increasing their proliferative potential but maintaining mucociliary differentiation at ALI. We have shown these cells are amenable to genetic manipulation and can be used to produce novel disease models for research and dissemination.


Assuntos
Brônquios/citologia , Diferenciação Celular , Cílios/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Muco/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Animais , Dineínas do Axonema/metabolismo , Proliferação de Células , Forma Celular , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Dineínas/metabolismo , Impedância Elétrica , Fenômenos Eletrofisiológicos , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Síndrome de Kartagener/metabolismo , Síndrome de Kartagener/patologia , Síndrome de Kartagener/fisiopatologia , Cariotipagem , Camundongos , Microtúbulos/metabolismo , Modelos Biológicos , Fenótipo , Transdução Genética
17.
Sci Rep ; 6: 37955, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27897253

RESUMO

The cystic fibrosis (CF) airway surface liquid (ASL) provides a nutrient rich environment for bacterial growth including elevated glucose, which together with defective bacterial killing due to aberrant HCO3- transport and acidic ASL, make the CF airways susceptible to colonisation by respiratory pathogens such as Pseudomonas aeruginosa. Approximately half of adults with CF have CF related diabetes (CFRD) and this is associated with increased respiratory decline. CF ASL contains elevated lactate concentrations and hyperglycaemia can also increase ASL lactate. We show that primary human bronchial epithelial (HBE) cells secrete lactate into ASL, which is elevated in hyperglycaemia. This leads to ASL acidification in CFHBE, which could only be mimicked in non-CF HBE following HCO3- removal. Hyperglycaemia-induced changes in ASL lactate and pH were exacerbated by the presence of P. aeruginosa and were attenuated by inhibition of monocarboxylate lactate-H+ co-transporters (MCTs) with AR-C155858. We conclude that hyperglycaemia and P. aeruginosa induce a metabolic shift which increases lactate generation and efflux into ASL via epithelial MCT2 transporters. Normal airways compensate for MCT-driven H+ secretion by secreting HCO3-, a process which is dysfunctional in CF airway epithelium leading to ASL acidification and that these processes may contribute to worsening respiratory disease in CFRD.


Assuntos
Fibrose Cística/patologia , Hiperglicemia/fisiopatologia , Lactatos/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/patogenicidade , Mucosa Respiratória/patologia , Células Cultivadas , Fibrose Cística/metabolismo , Fibrose Cística/microbiologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Homeostase , Humanos , Concentração de Íons de Hidrogênio , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/microbiologia , Mucosa Respiratória/metabolismo
18.
Sci Rep ; 6: 27636, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27273266

RESUMO

Diabetes is associated with increased frequency of hospitalization due to bacterial lung infection. We hypothesize that increased airway glucose caused by hyperglycaemia leads to increased bacterial loads. In critical care patients, we observed that respiratory tract bacterial colonisation is significantly more likely when blood glucose is high. We engineered mutants in genes affecting glucose uptake and metabolism (oprB, gltK, gtrS and glk) in Pseudomonas aeruginosa, strain PAO1. These mutants displayed attenuated growth in minimal medium supplemented with glucose as the sole carbon source. The effect of glucose on growth in vivo was tested using streptozocin-induced, hyperglycaemic mice, which have significantly greater airway glucose. Bacterial burden in hyperglycaemic animals was greater than control animals when infected with wild type but not mutant PAO1. Metformin pre-treatment of hyperglycaemic animals reduced both airway glucose and bacterial load. These data support airway glucose as a critical determinant of increased bacterial load during diabetes.


Assuntos
Infecções Bacterianas/etiologia , Infecções Bacterianas/metabolismo , Glucose/metabolismo , Hiperglicemia/sangue , Hiperglicemia/complicações , Infecções Respiratórias/etiologia , Infecções Respiratórias/metabolismo , Adulto , Idoso , Animais , Infecções Bacterianas/microbiologia , Carga Bacteriana , Glicemia , Estado Terminal , Modelos Animais de Doenças , Feminino , Deleção de Genes , Genes Bacterianos , Humanos , Camundongos , Pessoa de Meia-Idade , Mutação , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/fisiologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/microbiologia , Infecções Respiratórias/microbiologia
19.
J Cell Mol Med ; 20(4): 758-64, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26837005

RESUMO

Lung disease and elevation of blood glucose are associated with increased glucose concentration in the airway surface liquid (ASL). Raised ASL glucose is associated with increased susceptibility to infection by respiratory pathogens including Staphylococcus aureus and Pseudomonas aeruginosa. We have previously shown that the anti-diabetes drug, metformin, reduces glucose-induced S. aureus growth across in vitro airway epithelial cultures. The aim of this study was to investigate whether metformin has the potential to reduce glucose-induced P. aeruginosa infections across airway epithelial (Calu-3) cultures by limiting glucose permeability. We also explored the effect of P. aeruginosa and metformin on airway epithelial barrier function by investigating changes in tight junction protein abundance. Apical P. aeruginosa growth increased with basolateral glucose concentration, reduced transepithelial electrical resistance (TEER) and increased paracellular glucose flux. Metformin pre-treatment of the epithelium inhibited the glucose-induced growth of P. aeruginosa, increased TEER and decreased glucose flux. Similar effects on bacterial growth and TEER were observed with the AMP activated protein kinase agonist, 5-aminoimidazole-4-carboxamide ribonucleotide. Interestingly, metformin was able to prevent the P. aeruginosa-induced reduction in the abundance of tight junction proteins, claudin-1 and occludin. Our study highlights the potential of metformin to reduce hyperglycaemia-induced P. aeruginosa growth through airway epithelial tight junction modulation, and that claudin-1 and occludin could be important targets to regulate glucose permeability across airway epithelia and supress bacterial growth. Further investigation into the mechanisms regulating metformin and P. aeruginosa action on airway epithelial tight junctions could yield new therapeutic targets to prevent/suppress hyperglycaemia-induced respiratory infections, avoiding the use of antibiotics.


Assuntos
Células Epiteliais/efeitos dos fármacos , Glucose/antagonistas & inibidores , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Transporte Biológico/efeitos dos fármacos , Linhagem Celular Tumoral , Claudina-1/genética , Claudina-1/metabolismo , Técnicas de Cocultura , Impedância Elétrica , Células Epiteliais/metabolismo , Expressão Gênica/efeitos dos fármacos , Glucose/toxicidade , Humanos , Ocludina/genética , Ocludina/metabolismo , Permeabilidade/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Ribonucleotídeos/farmacologia , Junções Íntimas/metabolismo
20.
Br J Pharmacol ; 172(22): 5306-17, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26333042

RESUMO

BACKGROUND AND PURPOSE: Valproic acid (VPA), a widely used epilepsy and bipolar disorder treatment, provides acute protection against haemorrhagic shock-induced mortality in a range of in vivo models through an unknown mechanism. In the liver, this effect occurs with a concomitant protection against a decrease in GSK3ß-Ser(9) phosphorylation. Here, we developed an in vitro model to investigate this protective effect of VPA and define a molecular mechanism. EXPERIMENTAL APPROACH: The human hepatocarcinoma cell line (Huh7) was exposed to conditions occurring during haemorrhagic shock (hypoxia, hypercapnia and hypothermia) to investigate the changes in GSK3ß-Ser(9) phosphorylation for a 4 h period following treatment with VPA, related congeners, PPAR agonists, antagonists and siRNA. KEY RESULTS: Huh7 cells undergoing combined hypoxia, hypercapnia, and hypothermia reproduced the reduced GSK3ß-Ser(9) phosphorylation shown in vivo during haemorrhagic shock, and this change was blocked by VPA. The protective effect occurred through upstream PTEN and Akt signalling, and prevented downstream ß-catenin degradation while increasing histone 2/3 acetylation. This effect was reproduced by several VPA-related compounds with known PPARγ agonist activity, independent of histone deacetylase (HDAC) inhibitory activity. Specific pharmacological inhibition (by T0070907) or knockdown of PPARγ blocked the protective effect of VPA against these signalling changes and apoptosis. In addition, specific activation of PPARγ using ciglitazone reproduced the changes induced by VPA in haemorrhagic shock-like conditions. CONCLUSION AND IMPLICATIONS: Changes in GSK3ß-Ser(9) phosphorylation in in vivo haemorrhagic shock models can be modelled in vitro, and this has identified a role for PPARγ activation in the protective role of VPA.


Assuntos
Quinase 3 da Glicogênio Sintase/metabolismo , PPAR gama/metabolismo , Substâncias Protetoras/farmacologia , Choque Hemorrágico/metabolismo , Ácido Valproico/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Glicogênio Sintase Quinase 3 beta , Humanos , Hipercapnia/metabolismo , Hipotermia/metabolismo , Hipóxia/metabolismo , L-Lactato Desidrogenase/metabolismo , PPAR gama/agonistas , PPAR gama/genética , Fosforilação/efeitos dos fármacos , RNA Interferente Pequeno/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA