Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 14: 1075767, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36741327

RESUMO

Globally, malnutrition has given birth to an alarming predicament, especially in developing countries, and has extensively shifted consumer preferences from conventional high-energy diets to a nutritionally balanced, cost-effective, sustainable, and healthy lifestyle. In keeping with this view and the mandate for developing high-yielding, disease-resistant biofortified staple food (wheat) for catering to the demand-driven market, the current research aimed at stacking together the enhanced grain protein content, carotenoid content, and disease resistance in an elite bread wheat background. The Y gene (PsyE1) and the GpcB1 gene were used as novel sources for enhancing the grain carotenoid and protein content in the commercial elite bread wheat cultivar HD2967. The combination also led to the stacking of resistance against all three foliar rusts owing to linked resistance genes. A stepwise hybridization using Parent 1 (HD2967 + PsyE1/Lr19/Sr25) with Parent 2 (PBW550 + GpcB1/Yr36+ Yr15), coupled with a phenotypic-biochemical selection, narrowed down 2748 F2 individuals to a subset of 649 F2 plants for molecular screening. The gene-specific markers PsyE1, PsyD1, Xucw108, and Xbarc8 for the genes PsyE1, PsyD1, GpcB1, and Yr15, respectively, were employed for forward selection. Four bread wheat lines positive for all the desired genes with high carotenoid (>8ppm) and protein (>13%) content were raised to the F5 generation and will be evaluated for yield potential after bulking. These improved advanced breeding lines developed following multipronged efforts should prove a valuable and unique source for the development of cultivars with improved nutritional quality and rust resistance in wheat breeding programs.

2.
PLoS One ; 17(4): e0266482, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35363829

RESUMO

The periodic breakdowns of stripe rust resistance due to emergence of new virulent and more aggressive pathotypes of Puccinia striiformis f. sp. tritici have resulted in severe epidemics in India. This necessitates the search for new and more durable resistance sources against stripe rust. The three bread wheat cultivars PBW 343 (carries Yr9 and Yr27), PBW 621 (carries Yr17) and HD 2967 (gene not known) were highly popular among the farmers after their release in 2011. But presently all three cultivars are highly susceptible to stripe rust at seedling as well as at adult plant stages as their resistance has been broken down due to emergence of new pathotypes of the pathogen (110S119, 238S119). In previous study, the crosses of PBW 621 with PBW 343 and HD 2967 and evaluation of further generations (up to F4) against pathotype 78S84 resulted in resistant segregants. In the present study, the F5 and F6 RIL populations have been evaluated against new pathotypes of Pst. The RILs categorized based on the disease severity on the P (Penultimate leaf) and F (flag) leaf into three categories i.e., high, moderate and low level of APR (adult plant resistance) having 1-200, 201-400 and >400 values of AUDPC, respectively, upon infection with stripe rust. The various APR components (latent period, lesion growth rate, spore production and uredial density) were studied on each category, i.e., resistant, moderately resistant and susceptible. The values of APR parameters decreased as the level of resistance increased. Based on molecular analysis, the lines (representing different categories of cross PBW 621 X PBW 343) containing the genes Yr9 and Yr17 due to their interactive effect provide resistance. Based on BSA using 35k SNPs and KASP markers association with phenotypic data of the RIL population (PBW 621 X HD 2967) showed the presence of two QTLs (Q.Pst.pau-6B, Q.Pst.pau-5B) responsible for the residual resistance and two SNPs AX-94891670 and AX-94454107 were found to be associated with the trait of interest on chromosome 6B and 5B respectively. The present study concludes that in the population of both the crosses (PBW 621 X PBW 343 and PBW 621 X HD 2967) major defeated gene contributed towards residual resistance by interacting with minor gene/QTLs.


Assuntos
Basidiomycota , Triticum , Pão , Resistência à Doença/genética , Marcadores Genéticos , Doenças das Plantas/genética , Puccinia , Triticum/genética
3.
Mol Breed ; 42(11): 67, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37313474

RESUMO

Colored wheat has piqued the interest of breeders and consumers alike. The chromosomal segment from 7E of Thinopyrum ponticum, which carries a leaf rust resistant gene, Lr19, has been rarely employed in wheat breeding operations due to its association with the Y gene, which gives a yellow tint to the flour. By prioritizing nutritional content over color preferences, consumer acceptance has undergone a paradigm change. Through marker-assisted backcross breeding, we introduced an alien segment harboring the Y (PsyE1) gene into a high yielding commercial bread wheat (HD 2967) background to generate rust resistant carotenoid biofortified bread wheat. Agro-morphological characterization was also performed on a subset of developed 70 lines having enhanced grain carotene content. In the introgression lines, carotenoid profiling using HPLC analysis demonstrated a considerable increase in ß-carotene levels (up to 12 ppm). Thus, the developed germplasm caters the threat to nutritional security and can be utilized to produce carotenoid fortified wheat. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01338-0.

4.
Comput Biol Chem ; 83: 107144, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31751884

RESUMO

Heat shock proteins are an important class of molecular chaperones known to impart tolerance under high temperature stress. sHSP26, a member of small heat shock protein subfamily is specifically involved in protecting plant's photosynthetic machinery. The present study aimed at identifying and characterizing sequence and structural variations in sHSP26 from genetically diverse progenitor and non-progenitor species of wheat. In silico analysis identified three paralogous copies of TaHSP26 to reside on short arm of chromosome 4A while one homeologue each was localized on long arm of chromosome 4B and 4D of cultivated bread wheat. Wild DD-genome donor Aegilops tauschii carried an additional sHSP26 gene (AET4Gv20569400) which was absent in the cultivated DD genome of bread wheat. In vitro amplification of this novel gene in wild accessions of Ae. tauschii and synthetic hexaploid wheat but not in cultivated bread wheat validated this finding. Further, significant length polymorphism could be identified in exon1 from diverse sHSP26 sequences. Multiple sequence alignment of procured sequences revealed numerous sSNPs and nsSNPs. D3A, P125 L, Q242 K were designated as homeolog specific- while A49 G as non-progenitor specific amino acid replacements. A 9-bp indel in TmHSP26-1(GA) translated into a deletion of SPM amino acid segment in chloroplast specific conserved consensus region III. High degree of divergence in nucleotide sequence between cultivated and wild species appeared in the form of higher ω values (Ka/Ks >1) indicating positive selection during the course of evolution. Phylogenetic analysis elucidated ancestral relationships between wheat sHSP26 proteins and orthologous proteins across plant kingdom. Overall, data mining approach may be employed as an effective pre-breeding strategy to identify and mobilize novel stress responsive genes and distinct allelic variants from wider germplasm collections of wheat to enhance climate resilience of present day elite wheat cultivars.


Assuntos
Núcleo Celular/genética , Cloroplastos/genética , Evolução Molecular , Proteínas de Choque Térmico/genética , Triticum/genética , Núcleo Celular/química , Cloroplastos/química , Proteínas de Choque Térmico/química , Filogenia , Conformação Proteica , Especificidade da Espécie
5.
Front Plant Sci ; 10: 211, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30858862

RESUMO

The inconsistent prevalence of abiotic stress in most of the agroecosystems can be addressed through deployment of plant material with stress adaptive plasticity. The present study explores water stress induced plasticity for early root-shoot development, proline induction and cell membrane injury in 57 accessions of Aegilops tauschii (DD-genome) and 26 accessions of Triticum dicoccoides (AABB-genome) along with durum and bread wheat cultivars. Thirty three Ae. tauschii accessions and 18 T. dicoccoides accessions showed an increase in root dry weight (ranging from 1.8 to 294.75%) under water stress. Shoot parameters- length and biomass, by and large were suppressed by water stress, but genotypes with stress adaptive plasticity leading to improvement of shoot traits (e.g., Ae tauschii accession 14191 and T. dicoccoides accession 7130) could be identified. Water stress induced active responses, rather than passive repartitioning of biomass was indicated by better shoot growth in seedlings of genotypes with enhanced root growth under stress. Membrane injury seemed to work as a trigger to activate water stress adaptive cellular machinery and was found positively correlated with several root-shoot based adaptive responses in seedlings. Stress induced proline accumulation in leaf tissue showed marked inter- and intra-specific genetic variation but hardly any association with stress adaptive plasticity. Genotypic variation for early stage plasticity traits viz., change in root dry weight, shoot length, shoot fresh weight, shoot dry weight and membrane injury positively correlated with grain weight based stress tolerance index (r = 0.267, r = 0.404, r = 0.299, r = 0.526, and r = 0.359, respectively). In another such trend, adaptive seedling plasticity correlated positively with resistance to early flowering under stress (r = 0.372 with membrane injury, r = 0.286 with change in root length, r = 0.352 with change in shoot length, r = 0.268 with change in shoot dry weight). Overall, Ae. tauschii accessions 9816, 14109, 14128, and T. dicoccoides accessions 5259 and 7130 were identified as potential donors of stress adaptive plasticity. The prospect of the study for molecular marker tagging, cloning of plasticity genes and creation of elite synthetic hexaploid donors is discussed.

6.
Physiol Mol Biol Plants ; 23(1): 99-114, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28250587

RESUMO

Antioxidant enzymes are known to play a significant role in scavenging reactive oxygen species and maintaining cellular homeostasis. Activity of four antioxidant enzymes viz., superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) was examined in the flag leaves of nine Aegilops tauschii and three Triticum dicoccoides accessions along with two bread wheat cultivars under irrigated and rain-fed conditions. These accessions were shortlisted from a larger set on the basis of field performance for a set of morpho-physiological traits. At anthesis, significant differences were observed in enzyme activities in two environments. A 45% elevation in average GR activity was observed under rain-fed conditions. Genotypic variation was evident within each environment as well as in terms of response to stress environment. Aegilops tauschii accession 3769 (86% increase in SOD, 41% in CAT, 72% in APX, 48% in GR activity) and acc. 14096 (37% increase in SOD, 32% CAT, 25% APX, 42% GR) showed up-regulation in the activity of all the four studied antioxidant enzymes. Aegilops tauschii accessions-9809, 14189 and 14113 also seemed to have strong induction mechanism as elevated activity of at least three enzymes was observed in them under rain-fed conditions. T. dicoccoides, on the other hand, maintained active antioxidative machinery under irrigated condition with relatively lower induction under stress. A significant positive correlation (r = 0.760) was identified between change in the activity of CAT and GR under stress. Changes in plant height, spike length and grain weight were recorded under stress and non-stress conditions on the basis of which a cumulative tolerance index was deduced and accessions were ranked for drought tolerance. Overall, Ae. tauschii accession 3769, 14096, 14113 (DD-genome) and T. dicoccoides accession 7054 (AABB-genome) may be used as donors to combine beneficial stress adaptive traits of all the three sub-genomes into a synthetic hexaploid for improving wheat for water stress conditions.

8.
Sci Rep ; 6: 23092, 2016 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-26976656

RESUMO

Climate change and slow yield gains pose a major threat to global wheat production. Underutilized genetic resources including landraces and wild relatives are key elements for developing high-yielding and climate-resilient wheat varieties. Landraces introduced into Mexico from Europe, also known as Creole wheats, are adapted to a wide range of climatic regimes and represent a unique genetic resource. Eight thousand four hundred and sixteen wheat landraces representing all dimensions of Mexico were characterized through genotyping-by-sequencing technology. Results revealed sub-groups adapted to specific environments of Mexico. Broadly, accessions from north and south of Mexico showed considerable genetic differentiation. However, a large percentage of landrace accessions were genetically very close, although belonged to different regions most likely due to the recent (nearly five centuries before) introduction of wheat in Mexico. Some of the groups adapted to extreme environments and accumulated high number of rare alleles. Core reference sets were assembled simultaneously using multiple variables, capturing 89% of the rare alleles present in the complete set. Genetic information about Mexican wheat landraces and core reference set can be effectively utilized in next generation wheat varietal improvement.


Assuntos
Cromossomos de Plantas/genética , Variação Genética , Genoma de Planta/genética , Triticum/genética , Algoritmos , Alelos , Fluxo Gênico , Frequência do Gene , Genótipo , Geografia , México , Modelos Genéticos , Fenótipo , Filogenia , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Poliploidia , Análise de Componente Principal , Especificidade da Espécie , Triticum/classificação
9.
J Appl Genet ; 46(4): 375-9, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16278510

RESUMO

Genetic relationships among 20 elite wheat genotypes were studied using microsatellite markers and pedigree analysis. A total of 93 polymorphic bands were obtained with 25 microsatellite primer pairs. Coefficient of parentage (COP) values were calculated using parentage information at the expansion level of 5. The pedigree-based similarity (mean 0.115, range 0.00-0.53) was lower than the similarity assessed using microsatellite markers (mean 0.70, range 0.47-0.91). Similarity estimates were used to construct dendrograms by using the unweighted pair-group method with arithmetic averages (UPGMA). Clustering of genotypes in respect of marker-based similarity revealed two groups. Genotype PBW442 diverged and appeared as distinct from all other genotypes in both marker-based and pedigree-based analysis. The correlation of COP values with genetic similarity values based on microsatellite markers is low (r = 0.285, p < 0.05). The results indicate a need to develop wheat varieties with a diverse genetic background and to incorporate new variability into the existing wheat gene pool.


Assuntos
Cruzamento/métodos , Variação Genética , Triticum/genética , Análise por Conglomerados , Genótipo , Repetições de Microssatélites/genética , Linhagem , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA