Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
bioRxiv ; 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38328212

RESUMO

UBA5 encodes for the E1 enzyme of the UFMylation cascade, which plays an essential role in ER homeostasis. The clinical phenotypes of UBA5-associated encephalopathy include developmental delays, epilepsy and intellectual disability. To date, there is no humanized neuronal model to study the cellular and molecular consequences of UBA5 pathogenic variants. We developed and characterized patient-derived cortical organoid cultures and identified defects in GABAergic interneuron development. We demonstrated aberrant neuronal firing and microcephaly phenotypes in patient-derived organoids. Mechanistically, we show that ER homeostasis is perturbed along with exacerbated unfolded protein response pathway in cells and organoids expressing UBA5 pathogenic variants. We also assessed two gene expression modalities that augmented UBA5 expression to rescue aberrant molecular and cellular phenotypes. Our study provides a novel humanized model that allows further investigations of UBA5 variants in the brain and highlights novel systemic approaches to alleviate cellular aberrations for this rare, developmental disorder.

2.
Res Sq ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38106181

RESUMO

NPM1 is an abundant nucleolar chaperone that, in addition to facilitating ribosome biogenesis, contributes to nucleolar stress responses and tumor suppression through its regulation of the p14 Alternative Reading Frame tumor suppressor protein (p14ARF). Oncogenic stress induces p14ARF to inhibit MDM2, stabilize p53 and arrest the cell cycle. Under non-stress conditions, NPM1 stabilizes p14ARF in nucleoli, preventing its degradation and blocking p53 activation. However, the mechanisms underlying the regulation of p14ARF by NPM1 are unclear because the structural features of the p14ARF-NPM1 complex remain elusive. Here we show that NPM1 sequesters p14ARF within phase-separated condensates, facilitating the assembly of p14ARF into a gel-like meso-scale network. This assembly is mediated by intermolecular contacts formed by hydrophobic residues in an α-helix and ß-strands within a partially folded N-terminal domain of p14ARF. Those hydrophobic interactions promote phase separation with NPM1, enhance nucleolar partitioning of p14ARF, restrict p14ARF and NPM1 diffusion within condensates and in nucleoli, and reduce cell viability. Our structural model provides novel insights into the multifaceted chaperone function of NPM1 in nucleoli by mechanistically linking the nucleolar localization of p14ARF to its partial folding and meso-scale assembly upon phase separation with NPM1.

3.
Acta Pharm Sin B ; 13(11): 4523-4534, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37969738

RESUMO

Pregnane X receptor (PXR) is a ligand-activated nuclear receptor that transcriptionally upregulates drug-metabolizing enzymes [e.g., cytochrome P450 3A4 (CYP3A4)] and transporters. Although the regulation of PXR target genes is well-characterized, less is known about the regulation of PXR protein level. By screening an RNAi library, we identified the F-box-only protein 44 (FBXO44) as a novel E3 ligase for PXR. PXR abundance increases upon knockdown of FBXO44, and, inversely, decreases upon overexpression of FBXO44. Further analysis revealed that FBXO44 interacts with PXR, leading to its ubiquitination and proteasomal degradation, and we determined that the F-box associated domain of FBXO44 and the ligand binding domain of PXR are required for the functional interaction. In summary, FBXO44 regulates PXR protein abundance, which has downstream consequences for CYP3A4 levels and drug-drug interactions. The results of this study provide new insight into the molecular mechanisms that regulate PXR protein level and activity and suggest the importance of considering how modulating E3 ubiquitin ligase activities will affect PXR-mediated drug metabolism.

4.
Nat Commun ; 14(1): 1739, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37019972

RESUMO

Oncogenic fusions formed through chromosomal rearrangements are hallmarks of childhood cancer that define cancer subtype, predict outcome, persist through treatment, and can be ideal therapeutic targets. However, mechanistic understanding of the etiology of oncogenic fusions remains elusive. Here we report a comprehensive detection of 272 oncogenic fusion gene pairs by using tumor transcriptome sequencing data from 5190 childhood cancer patients. We identify diverse factors, including translation frame, protein domain, splicing, and gene length, that shape the formation of oncogenic fusions. Our mathematical modeling reveals a strong link between differential selection pressure and clinical outcome in CBFB-MYH11. We discover 4 oncogenic fusions, including RUNX1-RUNX1T1, TCF3-PBX1, CBFA2T3-GLIS2, and KMT2A-AFDN, with promoter-hijacking-like features that may offer alternative strategies for therapeutic targeting. We uncover extensive alternative splicing in oncogenic fusions including KMT2A-MLLT3, KMT2A-MLLT10, C11orf95-RELA, NUP98-NSD1, KMT2A-AFDN and ETV6-RUNX1. We discover neo splice sites in 18 oncogenic fusion gene pairs and demonstrate that such splice sites confer therapeutic vulnerability for etiology-based genome editing. Our study reveals general principles on the etiology of oncogenic fusions in childhood cancer and suggests profound clinical implications including etiology-based risk stratification and genome-editing-based therapeutics.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Criança , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Fusão Oncogênica , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Transcriptoma , Causalidade , Proteínas de Fusão Oncogênica/genética
5.
Life Sci Alliance ; 5(11)2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35820704

RESUMO

The mitotic deacetylase complex MiDAC has recently been shown to play a vital physiological role in embryonic development and neurite outgrowth. However, how MiDAC functionally intersects with other chromatin-modifying regulators is poorly understood. Here, we describe a physical interaction between the histone H3K27 demethylase UTX, a complex-specific subunit of the enhancer-associated MLL3/4 complexes, and MiDAC. We demonstrate that UTX bridges the association of the MLL3/4 complexes and MiDAC by interacting with ELMSAN1, a scaffolding subunit of MiDAC. Our data suggest that MiDAC constitutes a negative genome-wide regulator of H4K20ac, an activity which is counteracted by the MLL3/4 complexes. MiDAC and the MLL3/4 complexes co-localize at many genomic regions, which are enriched for H4K20ac and the enhancer marks H3K4me1, H3K4me2, and H3K27ac. We find that MiDAC antagonizes the recruitment of UTX and MLL4 and negatively regulates H4K20ac, and to a lesser extent H3K4me2 and H3K27ac, resulting in transcriptional attenuation of associated genes. In summary, our findings provide a paradigm how the opposing roles of chromatin-modifying components, such as MiDAC and the MLL3/4 complexes, balance the transcriptional output of specific gene expression programs.


Assuntos
Elementos Facilitadores Genéticos , Histonas , Cromatina/genética , Elementos Facilitadores Genéticos/genética , Expressão Gênica , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Histonas/metabolismo
6.
Sci Transl Med ; 14(653): eabq2096, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35857643

RESUMO

Chimeric transcription factors drive lineage-specific oncogenesis but are notoriously difficult to target. Alveolar rhabdomyosarcoma (RMS) is an aggressive childhood soft tissue sarcoma transformed by the pathognomonic Paired Box 3-Forkhead Box O1 (PAX3-FOXO1) fusion protein, which governs a core regulatory circuitry transcription factor network. Here, we show that the histone lysine demethylase 4B (KDM4B) is a therapeutic vulnerability for PAX3-FOXO1+ RMS. Genetic and pharmacologic inhibition of KDM4B substantially delayed tumor growth. Suppression of KDM4 proteins inhibited the expression of core oncogenic transcription factors and caused epigenetic alterations of PAX3-FOXO1-governed superenhancers. Combining KDM4 inhibition with cytotoxic chemotherapy led to tumor regression in preclinical PAX3-FOXO1+ RMS subcutaneous xenograft models. In summary, we identified a targetable mechanism required for maintenance of the PAX3-FOXO1-related transcription factor network, which may translate to a therapeutic approach for fusion-positive RMS.


Assuntos
Rabdomiossarcoma Alveolar , Rabdomiossarcoma , Carcinogênese/genética , Linhagem Celular Tumoral , Criança , Proteína Forkhead Box O1/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Fator de Transcrição PAX3/genética , Fator de Transcrição PAX3/metabolismo , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Fatores de Transcrição Box Pareados/uso terapêutico , Rabdomiossarcoma/genética , Rabdomiossarcoma Alveolar/genética , Rabdomiossarcoma Alveolar/metabolismo , Rabdomiossarcoma Alveolar/patologia
7.
Blood Adv ; 6(11): 3386-3397, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35671062

RESUMO

Understanding the genomic and epigenetic mechanisms of drug resistance in pediatric acute lymphoblastic leukemia (ALL) is critical for further improvements in treatment outcomes. The role of transcriptomic response in conferring resistance to l-asparaginase (LASP) is poorly understood beyond asparagine synthetase (ASNS). We defined reproducible LASP response genes in LASP-resistant and LASP-sensitive ALL cell lines as well as primary leukemia samples from newly diagnosed patients. Defining target genes of the amino acid stress response-related transcription factor activating transcription factor 4 (ATF4) in ALL cell lines using chromatin immunoprecipitation sequencing (ChIP-seq) revealed 45% of genes that changed expression after LASP treatment were direct targets of the ATF4 transcription factor, and 34% of these genes harbored LASP-responsive ATF4 promoter binding events. SLC7A11 was found to be a response gene in cell lines and patient samples as well as a direct target of ATF4. SLC7A11 was also one of only 2.4% of LASP response genes with basal level gene expression that also correlated with LASP ex vivo resistance in primary leukemia cells. Experiments using chemical inhibition of SLC7A11 with sulfasalazine, gene overexpression, and partial gene knockout recapitulated LASP resistance or sensitivity in ALL cell lines. These findings show the importance of assessing changes in gene expression following treatment with an antileukemic agent for its association with drug resistance and highlight that many response genes may not differ in their basal expression in drug-resistant leukemia cells.


Assuntos
Aspartato-Amônia Ligase , Leucemia-Linfoma Linfoblástico de Células Precursoras , Fator 4 Ativador da Transcrição/genética , Aminoácidos/uso terapêutico , Asparaginase/farmacologia , Asparaginase/uso terapêutico , Aspartato-Amônia Ligase/genética , Aspartato-Amônia Ligase/metabolismo , Linhagem Celular Tumoral , Criança , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
8.
JCI Insight ; 5(12)2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32427579

RESUMO

BACKGROUNDPD-1 and PD-L1 have been studied interchangeably in the clinic as checkpoints to reinvigorate T cells in diverse tumor types. Data for biologic effects of checkpoint blockade in human premalignancy are limited.METHODSWe analyzed the immunologic effects of PD-L1 blockade in a clinical trial of atezolizumab in patients with asymptomatic multiple myeloma (AMM), a precursor to clinical malignancy. Genomic signatures of PD-L1 blockade in purified monocytes and T cells in vivo were also compared with those following PD-1 blockade in lung cancer patients. Effects of PD-L1 blockade on monocyte-derived DCs were analyzed to better understand its effects on myeloid antigen-presenting cells.RESULTSIn contrast to anti-PD-1 therapy, anti-PD-L1 therapy led to a distinct inflammatory signature in CD14+ monocytes and increase in myeloid-derived cytokines (e.g., IL-18) in vivo. Treatment of AMM patients with atezolizumab led to rapid activation and expansion of circulating myeloid cells, which persisted in the BM. Blockade of PD-L1 on purified monocyte-derived DCs led to rapid inflammasome activation and synergized with CD40L-driven DC maturation, leading to greater antigen-specific T cell expansion.CONCLUSIONThese data show that PD-L1 blockade leads to distinct systemic immunologic effects compared with PD-1 blockade in vivo in humans, particularly manifest as rapid myeloid activation. These findings also suggest an additional role for PD-L1 as a checkpoint for regulating inflammatory phenotype of myeloid cells and antigen presentation in DCs, which may be harnessed to improve PD-L1-based combination therapies.TRIAL REGISTRATIONNCT02784483.FUNDINGThis work is supported, in part, by funds from NIH/NCI (NCI CA197603, CA238471, and CA208328).


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Antígeno B7-H1/imunologia , Mieloma Múltiplo/tratamento farmacológico , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Células Apresentadoras de Antígenos/imunologia , Humanos , Imunoterapia/métodos , Inflamação/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/imunologia , Mieloma Múltiplo/imunologia , Receptor de Morte Celular Programada 1/efeitos dos fármacos
9.
Nat Commun ; 11(1): 1228, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32144272

RESUMO

The BCL-2 antagonist venetoclax is highly effective in multiple myeloma (MM) patients exhibiting the 11;14 translocation, the mechanistic basis of which is unknown. In evaluating cellular energetics and metabolism of t(11;14) and non-t(11;14) MM, we determine that venetoclax-sensitive myeloma has reduced mitochondrial respiration. Consistent with this, low electron transport chain (ETC) Complex I and Complex II activities correlate with venetoclax sensitivity. Inhibition of Complex I, using IACS-010759, an orally bioavailable Complex I inhibitor in clinical trials, as well as succinate ubiquinone reductase (SQR) activity of Complex II, using thenoyltrifluoroacetone (TTFA) or introduction of SDHC R72C mutant, independently sensitize resistant MM to venetoclax. We demonstrate that ETC inhibition increases BCL-2 dependence and the 'primed' state via the ATF4-BIM/NOXA axis. Further, SQR activity correlates with venetoclax sensitivity in patient samples irrespective of t(11;14) status. Use of SQR activity in a functional-biomarker informed manner may better select for MM patients responsive to venetoclax therapy.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Complexo II de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Mieloma Múltiplo/tratamento farmacológico , Sulfonamidas/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Linhagem Celular Tumoral , Cromossomos Humanos Par 11/genética , Cromossomos Humanos Par 14/genética , Resistencia a Medicamentos Antineoplásicos , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo II de Transporte de Elétrons/antagonistas & inibidores , Técnicas de Silenciamento de Genes , Humanos , Proteínas de Membrana/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Mutação , Oxirredução/efeitos dos fármacos , Seleção de Pacientes , Prognóstico , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Sulfonamidas/uso terapêutico , Tenoiltrifluoracetona/farmacologia , Translocação Genética
10.
Cancer Lett ; 435: 44-54, 2018 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-30059709

RESUMO

Agents that inhibit bromodomain and extra-terminal domain (BET) protein have been actively tested in the clinic as potential anticancer drugs. Proteasome inhibitors such as carfilzomib (CFZ) are FDA-approved for the treatment of patients with advanced multiple myeloma and have been tested against other cancers. The current study focuses on the combination of a BET inhibitor (e.g., JQ1) and a proteasome inhibitor (e.g., CFZ) as a novel cancer therapeutic strategy and the underlying mechanisms. The tested combination (JQ1 with CFZ) synergistically decreased cell survival and enhanced apoptosis in vitro and inhibited tumor growth in vivo. The dramatic induction of apoptosis was accompanied by enhanced elevation of Bim and ER stress. Bim knockout significantly attenuated apoptosis induced by the combination, suggesting a critical role of Bim induction in mediating the enhanced induction of apoptosis by BET and proteasome co-inhibition. The combination significantly increased Bim mRNA levels with limited effect on Bim protein stability, suggesting a primary transcriptional regulation of enhanced Bim expression. Our findings warrant further investigation of this combinatorial strategy as an effective regimen against cancer in the clinic.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Proteína 11 Semelhante a Bcl-2/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Inibidores de Proteassoma/farmacologia , Proteínas/antagonistas & inibidores , Células A549 , Animais , Apoptose/genética , Azepinas/administração & dosagem , Azepinas/farmacologia , Proteína 11 Semelhante a Bcl-2/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Estresse do Retículo Endoplasmático/genética , Células HCT116 , Humanos , Camundongos Nus , Neoplasias/genética , Neoplasias/metabolismo , Oligopeptídeos/administração & dosagem , Oligopeptídeos/farmacologia , Inibidores de Proteassoma/administração & dosagem , Proteínas/genética , Proteínas/metabolismo , Interferência de RNA , Triazóis/administração & dosagem , Triazóis/farmacologia , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
11.
Curr Opin Oncol ; 30(5): 338-344, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29994904

RESUMO

PURPOSE OF REVIEW: Targeting cancer metabolism for therapy has received much attention over the last decade with various small molecule inhibitors entering clinical trials. The present review highlights the latest strategies to target glucose and glutamine metabolism for cancer therapy with a particular emphasis on novel combinatorial treatment approaches. RECENT FINDINGS: Inhibitors of glucose, lactate, and glutamine transport and the ensuing metabolism are in preclinical to clinical trial stages of investigation. Recent advances in our understanding of cell-intrinsic and cell-extrinsic factors that dictate dependence on these targets have informed the development of rational, synthetic lethality-based strategies to exploit these metabolic vulnerabilities. SUMMARY: Cancer cells exhibit a number of metabolic alterations with functional consequences beyond that of sustaining cellular energetics and biosynthesis. Elucidating context-specific metabolic dependencies and their connections to oncogenic signaling and epigenetic programs in tumor cells represents a promising approach to identify new metabolic drug targets for cancer therapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Sistema ASC de Transporte de Aminoácidos/antagonistas & inibidores , Sistema ASC de Transporte de Aminoácidos/metabolismo , Ensaios Clínicos Fase I como Assunto , Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/antagonistas & inibidores , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Glutaminase/antagonistas & inibidores , Glutaminase/metabolismo , Glutamina/metabolismo , Humanos , Ácido Láctico/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Terapia de Alvo Molecular , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Transportadores de Ácidos Monocarboxílicos/metabolismo , Complexo Piruvato Desidrogenase/antagonistas & inibidores , Complexo Piruvato Desidrogenase/metabolismo
12.
Eur J Med Chem ; 139: 573-586, 2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-28837922

RESUMO

Cancer cells consume more glucose to fuel metabolic programs fundamental to sustaining their survival, growth and proliferation. Among the fourteen SLC2A family members, GLUTs 1 and 4 are high-affinity glucose transporters. GLUT4 (SLC2A4) is highly expressed in muscle and adipose tissue. Basally retained within the cell, GLUT4 traffics to the plasma membrane (PM) in response to insulin and exercise-stimulation. The plasma cell malignancy multiple myeloma (MM) exhibits increased constitutive expression of GLUT4 on the PM, co-opting use of GLUT4 for survival and proliferation. GLUT4 inhibition by knockdown or treatment with the FDA-approved HIV protease inhibitor ritonavir leads to cytostatic and/or cytotoxic and chemosensitizing effects in tumor cells both in vitro and in vivo. We recently reported our generation of GLUT4 homology models and virtual high-throughput screening (vHTS) to identify multiple series of novel GLUT4 antagonists. In this report, we describe our initial hit-to-lead optimization to synthesize new analogs with improved potency and selectivity for GLUT4, and the biological characterization of these compounds in a variety of assays. We show that our lead compound (compound 20) decreases glucose uptake and cell proliferation as well as inhibits the expression of pro-survival MCL-1 in MM similar to the effect observed via knockdown of GLUT4 expression. Compound 20 is also effective at chemosensitizing multiple myeloma cell lines and patient samples to venetoclax, dexamethasone and melphalan. In sum, we report development of selective GLUT4 inhibitors lacking inhibitory activity against GLUT1 and GLUT8. We show that selective pharmacological inhibition of GLUT4 is feasible and this may represent a novel strategy for the treatment and chemosensitization of multiple myeloma to standard therapeutics.


Assuntos
Antineoplásicos/farmacologia , Transportador de Glucose Tipo 4/antagonistas & inibidores , Mieloma Múltiplo/tratamento farmacológico , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Transportador de Glucose Tipo 4/metabolismo , Células HEK293 , Humanos , Camundongos , Estrutura Molecular , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Relação Estrutura-Atividade , Células Tumorais Cultivadas
13.
J Clin Diagn Res ; 11(5): EC40-EC42, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28658771

RESUMO

INTRODUCTION: Landsteiner ABO system of blood groups is most important for transfusion medicine and has subtypes of A Antigen, A1 and A2, upon which further groups of A and AB have been classified. Of individuals with A antigen, approximately 20% belong to A2 while rest 80% belong to A1. Anti-A1 Lectin, a cold agglutinin which destroys A1 cells is clinically significant when they react at 37°C, causing transfusion reactions. AIM: To assess the prevalence of A1 and A2 subgroups in the population. MATERIALS AND METHODS: This was two year retrospective analysis of blood groups of donors coming to the blood bank of Karnataka Institute of Medical Science, Hubli, Karnataka, India. The data of the subgroups A and AB was analysed. RESULTS: 20,864 donors were analysed. Of 5466 (26.20%) of A group, 5406 (98.90%) belonged to A1 subgroup and only 60 (1.10%) belonged to A2 subgroup. Of 1708 donors with blood group AB, 1532 (89.70%) belonged to A1B subgroup and 176 (10.30%) belonged to A2B. It was noted that A2 in AB blood-group, as A2B, was more frequent in occurrence than presence of A2 as an A blood group. Rhesus negative frequency in these subgroups was also reported. CONCLUSION: Having known the prevalence of A1 and A2 subgroups and incorporating them into the ABO grouping system can limit these minor, yet dangerous, transfusion incompatibilities.

14.
Crit Rev Oncol Hematol ; 113: 1-7, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28427500

RESUMO

Specificity protein 1 (Sp1) is a widely expressed transcription factor that plays an important role in the promotion of oncogenes required for tumor survival, progression and metastasis. Sp1 is highly expressed in several cancers including colorectal cancer (CRC) and is related to poor prognosis. Therefore, targeting Sp1 is a rational for CRC therapy. In this review, we will recapitulate the current understanding of Sp1 signaling, its molecular mechanisms, and its potential involvement in CRC growth, progression and metastasis. We will also discuss the current therapeutic drugs for CRC and their mechanism of action via Sp1.


Assuntos
Neoplasias Colorretais/metabolismo , Progressão da Doença , Metástase Neoplásica , Fator de Transcrição Sp1 , Neoplasias Colorretais/patologia , Humanos , Transdução de Sinais
15.
J Biol Chem ; 290(23): 14441-53, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-25847249

RESUMO

Tumor cells rely on elevated glucose consumption and metabolism for survival and proliferation. Glucose transporters mediating glucose entry are key proximal rate-limiting checkpoints. Unlike GLUT1 that is highly expressed in cancer and more ubiquitously expressed in normal tissues, GLUT4 exhibits more limited normal expression profiles. We have previously determined that insulin-responsive GLUT4 is constitutively localized on the plasma membrane of myeloma cells. Consequently, suppression of GLUT4 or inhibition of glucose transport with the HIV protease inhibitor ritonavir elicited growth arrest and/or apoptosis in multiple myeloma. GLUT4 inhibition also caused sensitization to metformin in multiple myeloma and chronic lymphocytic leukemia and a number of solid tumors suggesting the broader therapeutic utility of targeting GLUT4. This study sought to identify selective inhibitors of GLUT4 to develop a more potent cancer chemotherapeutic with fewer potential off-target effects. Recently, the crystal structure of GLUT1 in an inward open conformation was reported. Although this is an important achievement, a full understanding of the structural biology of facilitative glucose transport remains elusive. To date, there is no three-dimensional structure for GLUT4. We have generated a homology model for GLUT4 that we utilized to screen for drug-like compounds from a library of 18 million compounds. Despite 68% homology between GLUT1 and GLUT4, our virtual screen identified two potent compounds that were shown to target GLUT4 preferentially over GLUT1 and block glucose transport. Our results strongly bolster the utility of developing GLUT4-selective inhibitors as anti-cancer therapeutics.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Transportador de Glucose Tipo 4/antagonistas & inibidores , Transportador de Glucose Tipo 4/metabolismo , Animais , Simulação por Computador , Bases de Dados de Produtos Farmacêuticos , Glucose/metabolismo , Transportador de Glucose Tipo 1/antagonistas & inibidores , Transportador de Glucose Tipo 1/química , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 4/química , Humanos , Camundongos , Modelos Moleculares , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Conformação Proteica , Bibliotecas de Moléculas Pequenas/farmacologia
16.
Clin Cancer Res ; 21(5): 1161-71, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25542900

RESUMO

PURPOSE: We have previously demonstrated that ritonavir targeting of glycolysis is growth inhibitory and cytotoxic in a subset of multiple myeloma cells. In this study, our objective was to investigate the metabolic basis of resistance to ritonavir and to determine the utility of cotreatment with the mitochondrial complex I inhibitor metformin to target compensatory metabolism. EXPERIMENTAL DESIGN: We determined combination indices for ritonavir and metformin, impact on myeloma cell lines, patient samples, and myeloma xenograft growth. Additional evaluation in breast, melanoma, and ovarian cancer cell lines was also performed. Signaling connected to suppression of the prosurvival BCL-2 family member MCL-1 was evaluated in multiple myeloma cell lines and tumor lysates. Reliance on oxidative metabolism was determined by evaluation of oxygen consumption, and dependence on glutamine was assessed by estimation of viability upon metabolite withdrawal in the context of specific metabolic perturbations. RESULTS: Ritonavir-treated multiple myeloma cells exhibited increased reliance on glutamine metabolism. Ritonavir sensitized multiple myeloma cells to metformin, effectively eliciting cytotoxicity both in vitro and in an in vivo xenograft model of multiple myeloma and in breast, ovarian, and melanoma cancer cell lines. Ritonavir and metformin effectively suppressed AKT and mTORC1 phosphorylation and prosurvival BCL-2 family member MCL-1 expression in multiple myeloma cell lines in vitro and in vivo. CONCLUSIONS: FDA-approved ritonavir and metformin effectively target multiple myeloma cell metabolism to elicit cytotoxicity in multiple myeloma. Our studies warrant further investigation into repurposing ritonavir and metformin to target the metabolic plasticity of myeloma to more broadly target myeloma heterogeneity and prevent the reemergence of chemoresistant aggressive multiple myeloma.


Assuntos
Antineoplásicos/farmacologia , Metformina/farmacologia , Mieloma Múltiplo/metabolismo , Ritonavir/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Quimioterapia Combinada , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Expressão Gênica , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Glutamina/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Metformina/administração & dosagem , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Complexos Multiproteicos/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Invasividade Neoplásica , Consumo de Oxigênio/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ritonavir/administração & dosagem , Serina-Treonina Quinases TOR/metabolismo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Virol ; 86(17): 9552, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22879621

RESUMO

A wide-host-range bacteriophage (phage) PIS136 was isolated from PA136, a strain of Saccharomonospora belonging to the group actinomycetes. Here, we present the genome sequence of the PIS136 phage, which is 94,870 bp long and contains 132 putative coding sequences and one tRNA gene. An IS element-like region with two genes for putative transposases was identified in the genome. The presence of IS element-like sequences suggests that PIS136 is still under active evolution.


Assuntos
Actinomycetales/virologia , Bacteriófagos/genética , Genoma Viral , Siphoviridae/genética , Bacteriófagos/classificação , Bacteriófagos/isolamento & purificação , Sequência de Bases , Dados de Sequência Molecular , Siphoviridae/classificação , Siphoviridae/isolamento & purificação , Microbiologia do Solo , Transposases/genética , Proteínas Virais/genética
18.
BMC Biochem ; 10: 1, 2009 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-19121228

RESUMO

BACKGROUND: Mycobacterium tuberculosis, an intracellular pathogen encounters redox stress throughout its life inside the host. In order to protect itself from the redox onslaughts of host immune system, M. tuberculosis appears to have developed accessory thioredoxin-like proteins which are represented by ORFs encoding WhiB-like proteins. We have earlier reported that WhiB1/Rv3219 is a thioredoxin like protein of M. tuberculosis and functions as a protein disulfide reductase. Generally thioredoxins have many substrate proteins. The current study aims to identify the substrate protein(s) of M. tuberculosis WhiB1. RESULTS: Using yeast two-hybrid screen, we identified alpha (1,4)-glucan branching enzyme (GlgB) of M. tuberculosis as a interaction partner of WhiB1. In vitro GST pull down assay confirmed the direct physical interaction between GlgB and WhiB1. Both mass spectrometry data of tryptic digests and in vitro labeling of cysteine residues with 4-acetamido-4' maleimidyl-stilbene-2, 2'-disulfonic acid showed that in GlgB, C95 and C658 are free but C193 and C617 form an intra-molecular disulfide bond. WhiB1 has a C37XXC40 motif thus a C40S mutation renders C37 to exist as a free thiol to form a hetero-disulfide bond with the cysteine residue of substrate protein. A disulfide mediated binary complex formation between GlgB and WhiB1C40S was shown by both in-solution protein-protein interaction and thioredoxin affinity chromatography. Finally, transfer of reducing equivalent from WhiB1 to GlgB disulfide was confirmed by 4-acetamido-4' maleimidyl-stilbene-2, 2'-disulfonic acid trapping by the reduced disulfide of GlgB. Two different thioredoxins, TrxB/Rv1471 and TrxC/Rv3914 of M. tuberculosis could not perform this reaction suggesting that the reduction of GlgB by WhiB1 is specific. CONCLUSION: We conclude that M. tuberculosis GlgB has one intra-molecular disulfide bond which is formed between C193 and C617. WhiB1, a thioredoxin like protein interacts with GlgB and transfers its electrons to the disulfide thus reduces the intra-molecular disulfide bond of GlgB. For the first time, we report that GlgB is one of the in vivo substrate of M. tuberculosis WhiB1.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/enzimologia , Tiorredoxinas/metabolismo , Enzima Ramificadora de 1,4-alfa-Glucana/antagonistas & inibidores , Enzima Ramificadora de 1,4-alfa-Glucana/química , Sequência de Aminoácidos , Proteínas de Bactérias/química , Cromatografia de Afinidade , Dissulfetos/química , Espectrometria de Massas , Dados de Sequência Molecular , Mycobacterium tuberculosis/metabolismo , Oxirredução , Domínios e Motivos de Interação entre Proteínas , Estilbenos/síntese química , Estilbenos/química , Ácidos Sulfônicos/síntese química , Ácidos Sulfônicos/química , Tiorredoxinas/química , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA