Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Cent Sci ; 10(5): 1105-1114, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38799654

RESUMO

Cyclooxygenase-2 (COX-2) is an enzyme that plays a pivotal role in peripheral inflammation and pain via the prostaglandin pathway. In the central nervous system (CNS), COX-2 is implicated in neurodegenerative and psychiatric disorders as a potential therapeutic target and biomarker. However, clinical studies with COX-2 have yielded inconsistent results, partly due to limited mechanistic understanding of how COX-2 activity relates to CNS pathology. Therefore, developing COX-2 positron emission tomography (PET) radiotracers for human neuroimaging is of interest. This study introduces [11C]BRD1158, which is a potent and uniquely fast-binding, selective COX-2 PET radiotracer. [11C]BRD1158 was developed by prioritizing potency at COX-2, isoform selectivity over COX-1, fast binding kinetics, and free fraction in the brain. Evaluated through in vivo PET neuroimaging in rodent models with human COX-2 overexpression, [11C]BRD1158 demonstrated high brain uptake, fast target-engagement, functional reversibility, and excellent specific binding, which is advantageous for human imaging applications. Lastly, post-mortem samples from Huntington's disease (HD) patients and preclinical HD mouse models showed that COX-2 levels were elevated specifically in disease-affected brain regions, primarily from increased expression in microglia. These findings indicate that COX-2 holds promise as a novel clinical marker of HD onset and progression, one of many potential applications of [11C]BRD1158 human PET.

2.
Hepatol Commun ; 8(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38619429

RESUMO

BACKGROUND: Mutations in the gene MTARC1 (mitochondrial amidoxime-reducing component 1) protect carriers from metabolic dysfunction-associated steatohepatitis (MASH) and cirrhosis. MTARC1 encodes the mARC1 enzyme, which is localized to the mitochondria and has no known MASH-relevant molecular function. Our studies aimed to expand on the published human genetic mARC1 data and to observe the molecular effects of mARC1 modulation in preclinical MASH models. METHODS AND RESULTS: We identified a novel human structural variant deletion in MTARC1, which is associated with various biomarkers of liver health, including alanine aminotransferase levels. Phenome-wide Mendelian Randomization analyses additionally identified novel putatively causal associations between MTARC1 expression, and esophageal varices and cardiorespiratory traits. We observed that protective MTARC1 variants decreased protein accumulation in in vitro overexpression systems and used genetic tools to study mARC1 depletion in relevant human and mouse systems. Hepatocyte mARC1 knockdown in murine MASH models reduced body weight, liver steatosis, oxidative stress, cell death, and fibrogenesis markers. mARC1 siRNA treatment and overexpression modulated lipid accumulation and cell death consistently in primary human hepatocytes, hepatocyte cell lines, and primary human adipocytes. mARC1 depletion affected the accumulation of distinct lipid species and the expression of inflammatory and mitochondrial pathway genes/proteins in both in vitro and in vivo models. CONCLUSIONS: Depleting hepatocyte mARC1 improved metabolic dysfunction-associated steatotic liver disease-related outcomes. Given the functional role of mARC1 in human adipocyte lipid accumulation, systemic targeting of mARC1 should be considered when designing mARC1 therapies. Our data point to plasma lipid biomarkers predictive of mARC1 abundance, such as Ceramide 22:1. We propose future areas of study to describe the precise molecular function of mARC1, including lipid trafficking and subcellular location within or around the mitochondria and endoplasmic reticulum.


Assuntos
Fígado Gorduroso , Hepatócitos , Animais , Humanos , Camundongos , Adipócitos , Biomarcadores , Ceramidas , Análise da Randomização Mendeliana
3.
Mol Metab ; 66: 101633, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36356832

RESUMO

OBJECTIVE: Obesity and its associated comorbidities represent a global health challenge with a need for well-tolerated, effective, and mechanistically diverse pharmaceutical interventions. Oxyntomodulin is a gut peptide that activates the glucagon receptor (GCGR) and glucagon-like peptide-1 receptor (GLP-1R) and reduces bodyweight by increasing energy expenditure and reducing energy intake in humans. Here we describe the pharmacological profile of the novel glucagon receptor (GCGR)/GLP-1 receptor (GLP-1R) dual agonist BI 456906. METHODS: BI 456906 was characterized using cell-based in vitro assays to determine functional agonism. In vivo pharmacological studies were performed using acute and subchronic dosing regimens to demonstrate target engagement for the GCGR and GLP-1R, and weight lowering efficacy. RESULTS: BI 456906 is a potent, acylated peptide containing a C18 fatty acid as a half-life extending principle to support once-weekly dosing in humans. Pharmacological doses of BI 456906 provided greater bodyweight reductions in mice compared with maximally effective doses of the GLP-1R agonist semaglutide. BI 456906's superior efficacy is the consequence of increased energy expenditure and reduced food intake. Engagement of both receptors in vivo was demonstrated via glucose tolerance, food intake, and gastric emptying tests for the GLP-1R, and liver nicotinamide N-methyltransferase mRNA expression and circulating biomarkers (amino acids, fibroblast growth factor-21) for the GCGR. The dual activity of BI 456906 at the GLP-1R and GCGR was supported using GLP-1R knockout and transgenic reporter mice, and an ex vivo bioactivity assay. CONCLUSIONS: BI 456906 is a potent GCGR/GLP-1R dual agonist with robust anti-obesity efficacy achieved by increasing energy expenditure and decreasing food intake.


Assuntos
Peptídeo 1 Semelhante ao Glucagon , Receptores de Glucagon , Animais , Humanos , Camundongos , Peptídeo 1 Semelhante ao Glucagon/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Oxintomodulina/farmacologia , Peptídeos/farmacologia , Peptídeos/metabolismo , Receptores de Glucagon/metabolismo
4.
Nat Commun ; 13(1): 3778, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35773251

RESUMO

PPM1D encodes a serine/threonine phosphatase that regulates numerous pathways including the DNA damage response and p53. Activating mutations and amplification of PPM1D are found across numerous cancer types. GSK2830371 is a potent and selective allosteric inhibitor of PPM1D, but its mechanism of binding and inhibition of catalytic activity are unknown. Here we use computational, biochemical and functional genetic studies to elucidate the molecular basis of GSK2830371 activity. These data confirm that GSK2830371 binds an allosteric site of PPM1D with high affinity. By further incorporating data from hydrogen deuterium exchange mass spectrometry and sedimentation velocity analytical ultracentrifugation, we demonstrate that PPM1D exists in an equilibrium between two conformations that are defined by the movement of the flap domain, which is required for substrate recognition. A hinge region was identified that is critical for switching between the two conformations and was directly implicated in the high-affinity binding of GSK2830371 to PPM1D. We propose that the two conformations represent active and inactive forms of the protein reflected by the position of the flap, and that binding of GSK2830371 shifts the equilibrium to the inactive form. Finally, we found that C-terminal truncating mutations proximal to residue 400 result in destabilization of the protein via loss of a stabilizing N- and C-terminal interaction, consistent with the observation from human genetic data that nearly all PPM1D mutations in cancer are truncating and occur distal to residue 400. Taken together, our findings elucidate the mechanism by which binding of a small molecule to an allosteric site of PPM1D inhibits its activity and provides insights into the biology of PPM1D.


Assuntos
Neoplasias , Proteína Fosfatase 2C , Sítio Alostérico , Aminopiridinas/farmacologia , Dipeptídeos/farmacologia , Humanos , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/genética , Conformação Proteica , Proteína Fosfatase 2C/antagonistas & inibidores , Proteína Fosfatase 2C/química , Proteína Fosfatase 2C/genética , Proteína Fosfatase 2C/metabolismo , Serina/genética , Serina/metabolismo , Relação Estrutura-Atividade
5.
Nat Chem Biol ; 18(6): 615-624, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35332332

RESUMO

The ability to understand and predict variable responses to therapeutic agents may improve outcomes in patients with cancer. We hypothesized that the basal gene-transcription state of cancer cell lines, coupled with cell viability profiles of small molecules, might be leveraged to nominate specific mechanisms of intrinsic resistance and to predict drug combinations that overcome resistance. We analyzed 564,424 sensitivity profiles to identify candidate gene-compound pairs, and validated nine such relationships. We determined the mechanism of a novel relationship, in which expression of the serine hydrolase enzymes monoacylglycerol lipase (MGLL) or carboxylesterase 1 (CES1) confers resistance to the histone lysine demethylase inhibitor GSK-J4 by direct enzymatic modification. Insensitive cell lines could be sensitized to GSK-J4 by inhibition or gene knockout. These analytical and mechanistic studies highlight the potential of integrating gene-expression features with small-molecule response to identify patient populations that are likely to benefit from treatment, to nominate rational candidates for combinations and to provide insights into mechanisms of action.


Assuntos
Histona Desmetilases , Monoacilglicerol Lipases , Biomarcadores , Sobrevivência Celular , Combinação de Medicamentos , Histona Desmetilases/metabolismo , Humanos
6.
J Med Chem ; 64(15): 11148-11168, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34342224

RESUMO

PRMT5 and its substrate adaptor proteins (SAPs), pICln and Riok1, are synthetic lethal dependencies in MTAP-deleted cancer cells. SAPs share a conserved PRMT5 binding motif (PBM) which mediates binding to a surface of PRMT5 distal to the catalytic site. This interaction is required for methylation of several PRMT5 substrates, including histone and spliceosome complexes. We screened for small molecule inhibitors of the PRMT5-PBM interaction and validated a compound series which binds to the PRMT5-PBM interface and directly inhibits binding of SAPs. Mode of action studies revealed the formation of a covalent bond between a halogenated pyridazinone group and cysteine 278 of PRMT5. Optimization of the starting hit produced a lead compound, BRD0639, which engages the target in cells, disrupts PRMT5-RIOK1 complexes, and reduces substrate methylation. BRD0639 is a first-in-class PBM-competitive inhibitor that can support studies of PBM-dependent PRMT5 activities and the development of novel PRMT5 inhibitors that selectively target these functions.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Descoberta de Drogas , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Piridazinas/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Proteína-Arginina N-Metiltransferases/metabolismo , Piridazinas/síntese química , Piridazinas/química , Relação Estrutura-Atividade
7.
Nat Chem Biol ; 16(5): 497-506, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32231343

RESUMO

We recently described glutathione peroxidase 4 (GPX4) as a promising target for killing therapy-resistant cancer cells via ferroptosis. The onset of therapy resistance by multiple types of treatment results in a stable cell state marked by high levels of polyunsaturated lipids and an acquired dependency on GPX4. Unfortunately, all existing inhibitors of GPX4 act covalently via a reactive alkyl chloride moiety that confers poor selectivity and pharmacokinetic properties. Here, we report our discovery that masked nitrile-oxide electrophiles, which have not been explored previously as covalent cellular probes, undergo remarkable chemical transformations in cells and provide an effective strategy for selective targeting of GPX4. The new GPX4-inhibiting compounds we describe exhibit unexpected proteome-wide selectivity and, in some instances, vastly improved physiochemical and pharmacokinetic properties compared to existing chloroacetamide-based GPX4 inhibitors. These features make them superior tool compounds for biological interrogation of ferroptosis and constitute starting points for development of improved inhibitors of GPX4.


Assuntos
Inibidores Enzimáticos/farmacologia , Nitrilas/química , Nitrilas/farmacologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/antagonistas & inibidores , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Animais , Linhagem Celular Tumoral , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Ferroptose/efeitos dos fármacos , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos SCID , Sondas Moleculares/química , Terapia de Alvo Molecular , Óxidos/química , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/química , Pró-Fármacos/química , Ratos Wistar , Selenocisteína/química , Selenocisteína/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade
8.
Mol Cell Proteomics ; 18(10): 2089-2098, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31409669

RESUMO

The N-terminal regions (tails) of histone proteins are dynamic elements that protrude from the nucleosome and are involved in many aspects of chromatin organization. Their epigenetic role is well-established, and post-translational modifications present on these regions contribute to transcriptional regulation. Considering their biological significance, relatively few structural details have been established for histone tails, mainly because of their inherently disordered nature. Although hydrogen/deuterium exchange mass spectrometry (HX-MS) is well-suited for the analysis of dynamic structures, it has seldom been employed in this context, presumably because of the poor N-terminal coverage provided by pepsin. Inspired from histone-clipping events, we profiled the activity of cathepsin-L under HX-MS quench conditions and characterized its specificity employing the four core histones (H2A, H2B, H3 and H4). Cathepsin-L demonstrated cleavage patterns that were substrate- and pH-dependent. Cathepsin-L generated overlapping N-terminal peptides about 20 amino acids long for H2A, H3, and H4 proving its suitability for the analysis of histone tails dynamics. We developed a comprehensive HX-MS method in combination with pepsin and obtained full sequence coverage for all histones. We employed our method to analyze histones H3 and H4. We observe rapid deuterium exchange of the N-terminal tails and cooperative unfolding (EX1 kinetics) in the histone-fold domains of histone monomers in-solution. Overall, this novel strategy opens new avenues for investigating the dynamic properties of histones that are not apparent from the crystal structures, providing insights into the structural basis of the histone code.


Assuntos
Catepsina L/metabolismo , Histonas/química , Código das Histonas , Humanos , Espectrometria de Massa com Troca Hidrogênio-Deutério , Concentração de Íons de Hidrogênio , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína , Proteólise , Especificidade por Substrato
9.
IUCrJ ; 6(Pt 4): 649-664, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31316809

RESUMO

Tryptophan biosynthesis is one of the most characterized processes in bacteria, in which the enzymes from Salmonella typhimurium and Escherichia coli serve as model systems. Tryptophan synthase (TrpAB) catalyzes the final two steps of tryptophan biosynthesis in plants, fungi and bacteria. This pyridoxal 5'-phosphate (PLP)-dependent enzyme consists of two protein chains, α (TrpA) and ß (TrpB), functioning as a linear αßßα heterotetrameric complex containing two TrpAB units. The reaction has a complicated, multistep mechanism resulting in the ß-replacement of the hydroxyl group of l-serine with an indole moiety. Recent studies have shown that functional TrpAB is required for the survival of pathogenic bacteria in macrophages and for evading host defense. Therefore, TrpAB is a promising target for drug discovery, as its orthologs include enzymes from the important human pathogens Streptococcus pneumoniae, Legionella pneumophila and Francisella tularensis, the causative agents of pneumonia, legionnaires' disease and tularemia, respectively. However, specific biochemical and structural properties of the TrpABs from these organisms have not been investigated. To fill the important phylogenetic gaps in the understanding of TrpABs and to uncover unique features of TrpAB orthologs to spearhead future drug-discovery efforts, the TrpABs from L. pneumophila, F. tularensis and S. pneumoniae have been characterized. In addition to kinetic properties and inhibitor-sensitivity data, structural information gathered using X-ray crystallo-graphy is presented. The enzymes show remarkable structural conservation, but at the same time display local differences in both their catalytic and allosteric sites that may be responsible for the observed differences in catalysis and inhibitor binding. This functional dissimilarity may be exploited in the design of species-specific enzyme inhibitors.

10.
Cell Rep ; 22(11): 2924-2936, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29539421

RESUMO

Gasdermin D (GSDMD) is considered a proinflammatory factor that mediates pyroptosis in macrophages to protect hosts from intracellular bacteria. Here, we reveal that GSDMD deficiency paradoxically augmented host responses to extracellular Escherichia coli, mainly by delaying neutrophil death, which established GSDMD as a negative regulator of innate immunity. In contrast to its activation in macrophages, in which activated inflammatory caspases cleave GSDMD to produce an N-terminal fragment (GSDMD-cNT) to trigger pyroptosis, GSDMD cleavage and activation in neutrophils was caspase independent. It was mediated by a neutrophil-specific serine protease, neutrophil elastase (ELANE), released from cytoplasmic granules into the cytosol in aging neutrophils. ELANE-mediated GSDMD cleavage was upstream of the caspase cleavage site and produced a fully active ELANE-derived NT fragment (GSDMD-eNT) that induced lytic cell death as efficiently as GSDMD-cNT. Thus, GSDMD is pleiotropic, exerting both pro- and anti-inflammatory effects that make it a potential target for antibacterial and anti-inflammatory therapies.


Assuntos
Anti-Inflamatórios/uso terapêutico , Proteínas Reguladoras de Apoptose/uso terapêutico , Morte Celular/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Proteínas Reguladoras de Apoptose/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Proteínas de Ligação a Fosfato
11.
Nat Chem Biol ; 13(9): 943-950, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28671682

RESUMO

New antibiotics with novel targets are greatly needed. Bacteria have numerous essential functions, but only a small fraction of such processes-primarily those involved in macromolecular synthesis-are inhibited by current drugs. Targeting metabolic enzymes has been the focus of recent interest, but effective inhibitors have been difficult to identify. We describe a synthetic azetidine derivative, BRD4592, that kills Mycobacterium tuberculosis (Mtb) through allosteric inhibition of tryptophan synthase (TrpAB), a previously untargeted, highly allosterically regulated enzyme. BRD4592 binds at the TrpAB α-ß-subunit interface and affects multiple steps in the enzyme's overall reaction, resulting in inhibition not easily overcome by changes in metabolic environment. We show that TrpAB is required for the survival of Mtb and Mycobacterium marinum in vivo and that this requirement may be independent of an adaptive immune response. This work highlights the effectiveness of allosteric inhibition for targeting proteins that are naturally highly dynamic and that are essential in vivo, despite their apparent dispensability under in vitro conditions, and suggests a framework for the discovery of a next generation of allosteric inhibitors.


Assuntos
Antituberculosos , Azetidinas/química , Mycobacterium tuberculosis/enzimologia , Bibliotecas de Moléculas Pequenas , Triptofano Sintase/antagonistas & inibidores , Regulação Alostérica , Antituberculosos/síntese química , Antituberculosos/química , Antituberculosos/farmacologia , Azetidinas/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Sistemas de Liberação de Medicamentos , Mycobacterium tuberculosis/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
12.
Cell Rep ; 20(1): 224-235, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28683316

RESUMO

Reactive oxygen species (ROS)-induced cysteine S-glutathionylation is an important posttranslational modification (PTM) that controls a wide range of intracellular protein activities. However, whether physiological ROS can modulate the function of extracellular components via S-glutathionylation is unknown. Using a screening approach, we identified ROS-mediated cysteine S-glutathionylation on several extracellular cytokines. Glutathionylation of the highly conserved Cys-188 in IL-1ß positively regulates its bioactivity by preventing its ROS-induced irreversible oxidation, including sulfinic acid and sulfonic acid formation. We show this mechanism protects IL-1ß from deactivation by ROS in an in vivo system of irradiation-induced bone marrow (BM) injury. Glutaredoxin 1 (Grx1), an enzyme that catalyzes deglutathionylation, was present and active in the extracellular space in serum and the BM, physiologically regulating IL-1ß glutathionylation and bioactivity. Collectively, we identify cysteine S-glutathionylation as a cytokine regulatory mechanism that could be a therapeutic target in the treatment of various infectious and inflammatory diseases.


Assuntos
Glutationa/metabolismo , Interleucina-1beta/metabolismo , Processamento de Proteína Pós-Traducional , Espécies Reativas de Oxigênio/metabolismo , Motivos de Aminoácidos , Animais , Células da Medula Óssea/metabolismo , Cisteína/metabolismo , Glutarredoxinas/metabolismo , Interleucina-1beta/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL
13.
J Immunol ; 198(7): 2854-2864, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28235862

RESUMO

Both microbial infection and sterile inflammation augment bone marrow (BM) neutrophil production, but whether the induced accelerated granulopoiesis is mediated by a common pathway and the nature of such a pathway are poorly defined. We recently established that BM myeloid cell-derived reactive oxygen species (ROS) externally regulate myeloid progenitor proliferation and differentiation in bacteria-elicited emergency granulopoiesis. In this article, we show that BM ROS levels are also elevated during sterile inflammation. Similar to in microbial infection, ROS were mainly generated by the phagocytic NADPH oxidase in Gr1+ myeloid cells. The myeloid cells and their ROS were uniformly distributed in the BM when visualized by multiphoton intravital microscopy, and ROS production was both required and sufficient for sterile inflammation-elicited reactive granulopoiesis. Elevated granulopoiesis was mediated by ROS-induced phosphatase and tensin homolog oxidation and deactivation, leading to upregulated PtdIns(3,4,5)P3 signaling and increased progenitor cell proliferation. Collectively, these results demonstrate that, although infection-induced emergency granulopoiesis and sterile inflammation-elicited reactive granulopoiesis are triggered by different stimuli and are mediated by distinct upstream signals, the pathways converge to NADPH oxidase-dependent ROS production by BM myeloid cells. Thus, BM Gr1+ myeloid cells represent a key hematopoietic niche that supports accelerated granulopoiesis in infective and sterile inflammation. This niche may be an excellent target in various immune-mediated pathologies or immune reconstitution after BM transplantation.


Assuntos
Células Precursoras de Granulócitos/metabolismo , Granulócitos/metabolismo , Hematopoese/imunologia , Inflamação/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Western Blotting , Diferenciação Celular/imunologia , Separação Celular , Modelos Animais de Doenças , Citometria de Fluxo , Granulócitos/citologia , Hematopoese/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Microscopia Confocal , Células Mieloides/citologia , Células Mieloides/metabolismo , Nicho de Células-Tronco/fisiologia
14.
J Exp Med ; 213(10): 1999-2018, 2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27551153

RESUMO

Cytokine-induced neutrophil mobilization from the bone marrow to circulation is a critical event in acute inflammation, but how it is accurately controlled remains poorly understood. In this study, we report that CXCR2 ligands are responsible for rapid neutrophil mobilization during early-stage acute inflammation. Nevertheless, although serum CXCR2 ligand concentrations increased during inflammation, neutrophil mobilization slowed after an initial acute fast phase, suggesting a suppression of neutrophil response to CXCR2 ligands after the acute phase. We demonstrate that granulocyte colony-stimulating factor (G-CSF), usually considered a prototypical neutrophil-mobilizing cytokine, was expressed later in the acute inflammatory response and unexpectedly impeded CXCR2-induced neutrophil mobilization by negatively regulating CXCR2-mediated intracellular signaling. Blocking G-CSF in vivo paradoxically elevated peripheral blood neutrophil counts in mice injected intraperitoneally with Escherichia coli and sequestered large numbers of neutrophils in the lungs, leading to sterile pulmonary inflammation. In a lipopolysaccharide-induced acute lung injury model, the homeostatic imbalance caused by G-CSF blockade enhanced neutrophil accumulation, edema, and inflammation in the lungs and ultimately led to significant lung damage. Thus, physiologically produced G-CSF not only acts as a neutrophil mobilizer at the relatively late stage of acute inflammation, but also prevents exaggerated neutrophil mobilization and the associated inflammation-induced tissue damage during early-phase infection and inflammation.


Assuntos
Quimiotaxia , Fator Estimulador de Colônias de Granulócitos/metabolismo , Neutrófilos/patologia , Pneumonia/metabolismo , Pneumonia/patologia , Receptores de Interleucina-8B/metabolismo , Transdução de Sinais , Doença Aguda , Animais , Medula Óssea/patologia , Quimiocina CXCL2/metabolismo , Escherichia coli/fisiologia , Ligantes , Lipopolissacarídeos , Pulmão/patologia , Lesão Pulmonar/sangue , Lesão Pulmonar/complicações , Lesão Pulmonar/microbiologia , Lesão Pulmonar/patologia , Camundongos Endogâmicos C57BL , Pneumonia/sangue , Pneumonia/complicações , Fator de Transcrição STAT3/metabolismo
15.
Immunity ; 42(1): 159-71, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25579427

RESUMO

The cellular mechanisms controlling infection-induced emergency granulopoiesis are poorly defined. Here we found that reactive oxygen species (ROS) concentrations in the bone marrow (BM) were elevated during acute infection in a phagocytic NADPH oxidase-dependent manner in myeloid cells. Gr1(+) myeloid cells were uniformly distributed in the BM, and all c-kit(+) progenitor cells were adjacent to Gr1(+) myeloid cells. Inflammation-induced ROS production in the BM played a critical role in myeloid progenitor expansion during emergency granulopoiesis. ROS elicited oxidation and deactivation of phosphatase and tensin homolog (PTEN), resulting in upregulation of PtdIns(3,4,5)P3 signaling in BM myeloid progenitors. We further revealed that BM myeloid cell-produced ROS stimulated proliferation of myeloid progenitors via a paracrine mechanism. Taken together, our results establish that phagocytic NADPH oxidase-mediated ROS production by BM myeloid cells plays a critical role in mediating emergency granulopoiesis during acute infection.


Assuntos
Infecções por Escherichia coli/imunologia , Escherichia coli/imunologia , Granulócitos/fisiologia , Hematopoese , Células Mieloides/fisiologia , Células Progenitoras Mieloides/fisiologia , Doença Aguda , Animais , Medula Óssea/microbiologia , Medula Óssea/patologia , Proliferação de Células , Células Cultivadas , Hematopoese/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , NADPH Oxidases/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Comunicação Parácrina , Fosfatos de Fosfatidilinositol/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
16.
Proc Natl Acad Sci U S A ; 110(19): 7726-31, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23610437

RESUMO

Diphosphoinositol pentakisphosphate (InsP7), a higher inositol phosphate containing energetic pyrophosphate bonds, is beginning to emerge as a key cellular signaling molecule. However, the various physiological and pathological processes that involve InsP7 are not completely understood. Here we report that cigarette smoke (CS) extract and nicotine reduce InsP7 levels in aging neutrophils. This subsequently leads to suppression of Akt deactivation, a causal mediator of neutrophil spontaneous death, and delayed neutrophil death. The effect of CS extract and nicotine on neutrophil death can be suppressed by either directly inhibiting the PtdIns(3,4,5)P3/Akt pathway, or increasing InsP7 levels via overexpression of InsP6K1, an inositol hexakisphosphate (InsP6) kinase responsible for InsP7 production in neutrophils. Delayed neutrophil death contributes to the pathogenesis of CS-induced chronic obstructive pulmonary disease. Therefore, disruption of InsP6K1 augments CS-induced neutrophil accumulation and lung damage. Taken together, these results suggest that CS and nicotine delay neutrophil spontaneous death by suppressing InsP7 production and consequently blocking Akt deactivation in aging neutrophils. Modifying neutrophil death via this pathway provides a strategy and therapeutic target for the treatment of tobacco-induced chronic obstructive pulmonary disease.


Assuntos
Fosfatos de Inositol/antagonistas & inibidores , Neutrófilos/efeitos dos fármacos , Nicotina/farmacologia , Fumar , Animais , Morte Celular , Membrana Celular/metabolismo , Separação Celular , Citometria de Fluxo , Fosfatos de Inositol/metabolismo , Pulmão/patologia , Camundongos , Camundongos Knockout , Neutrófilos/metabolismo , Neutrófilos/patologia , Proteína Oncogênica v-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Fatores de Tempo
17.
Methods Mol Biol ; 987: 129-34, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23475673

RESUMO

Enzyme-coated magnetic bioreactor particles enable a fast, convenient approach to metabolic screening. A semi-automated metabolite-profiling technique using these particles in a 96-well plate with liquid chromatography (LC)-mass spectrometry (MS)/MS detection is described. Reactions can be investigated over 1- to 2-min periods, and 96 or more reactions or reaction time points can be processed in parallel. Incorporation of DNA in the particle films facilitates determination of rates of DNA damage and metabolite-DNA adduct structures.


Assuntos
Reatores Biológicos , Cromatografia Líquida/métodos , Preparações Farmacêuticas/metabolismo , Espectrometria de Massas em Tandem/métodos , Animais , Cromanos/metabolismo , Diclofenaco/metabolismo , Humanos , Microssomos/metabolismo , Ratos , Tiazolidinedionas/metabolismo , Fatores de Tempo , Troglitazona
18.
Immunity ; 37(6): 1037-49, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23159440

RESUMO

The regulation of actin dynamics is pivotal for cellular processes such as cell adhesion, migration, and phagocytosis and thus is crucial for neutrophils to fulfill their roles in innate immunity. Many factors have been implicated in signal-induced actin polymerization, but the essential nature of the potential negative modulators are still poorly understood. Here we report that NADPH oxidase-dependent physiologically generated reactive oxygen species (ROS) negatively regulate actin polymerization in stimulated neutrophils via driving reversible actin glutathionylation. Disruption of glutaredoxin 1 (Grx1), an enzyme that catalyzes actin deglutathionylation, increased actin glutathionylation, attenuated actin polymerization, and consequently impaired neutrophil polarization, chemotaxis, adhesion, and phagocytosis. Consistently, Grx1-deficient murine neutrophils showed impaired in vivo recruitment to sites of inflammation and reduced bactericidal capability. Together, these results present a physiological role for glutaredoxin and ROS- induced reversible actin glutathionylation in regulation of actin dynamics in neutrophils.


Assuntos
Actinas/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Infecções Bacterianas/genética , Infecções Bacterianas/imunologia , Células Cultivadas , Quimiotaxia/imunologia , Glutarredoxinas/genética , Glutarredoxinas/imunologia , Humanos , Camundongos , Camundongos Knockout , NADPH Oxidases/metabolismo , Ligação Proteica , Pseudópodes/metabolismo
19.
Mol Biol Cell ; 23(7): 1219-30, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22323291

RESUMO

The second messenger phosphatidylinositol(3,4,5)P(3) (PtdIns(3,4,5)P(3)) is formed by stimulation of various receptors, including G protein-coupled receptors and integrins. The lipid phosphatases PTEN and SHIP1 are critical in regulating the level of PtdIns(3,4,5)P(3) during chemotaxis. Observations that loss of PTEN had minor and loss of SHIP1 resulted in a severe chemotaxis defect in neutrophils led to the belief that SHIP1 rather than PTEN acts as a predominant phospholipid phosphatase in establishing a PtdIns(3,4,5)P(3) compass. In this study, we show that SHIP1 regulates PtdIns(3,4,5)P(3) production in response to cell adhesion and plays a limited role when cells are in suspension. SHIP1((-)/(-)) neutrophils lose their polarity upon cell adhesion and are extremely adherent, which impairs chemotaxis. However, chemo-taxis can be restored by reducing adhesion. Loss of SHIP1 elevates Akt activation following cell adhesion due to increased PtdIns(3,4,5)P(3) production. From our observations, we conclude that SHIP1 prevents formation of top-down PtdIns(3,4,5)P(3) polarity to facilitate proper cell attachment and detachment during chemotaxis.


Assuntos
Adesão Celular/fisiologia , Movimento Celular/fisiologia , PTEN Fosfo-Hidrolase/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Animais , Polaridade Celular/fisiologia , Quimiotaxia de Leucócito/fisiologia , Técnicas In Vitro , Inositol Polifosfato 5-Fosfatases , Camundongos , Camundongos Knockout , Modelos Biológicos , Neutrófilos/fisiologia , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/genética , Fosfatos de Fosfatidilinositol/biossíntese , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/deficiência , Monoéster Fosfórico Hidrolases/genética , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sistemas do Segundo Mensageiro , Tirosina/química
20.
Anal Chem ; 81(24): 9921-9, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19904994

RESUMO

Silica nanoparticle bioreactors featuring thin films of enzymes and polyions were utilized in a novel high-throughput 96-well plate format for drug metabolism profiling. The utility of the approach was illustrated by investigating the metabolism of the drugs diclofenac (DCF), troglitazone (TGZ), and raloxifene, for which we observed known metabolic oxidation and bioconjugation pathways and turnover rates. A broad range of enzymes was included by utilizing human liver (HLM), rat liver (RLM) and bicistronic human-cyt P450 3A4 (bicis.-3A4) microsomes as enzyme sources. This parallel approach significantly shortens sample preparation steps compared to an earlier manual processing with nanoparticle bioreactors, allowing a range of significant enzyme reactions to be processed simultaneously. Enzyme turnover rates using the microsomal bioreactors were 2-3 fold larger compared to using conventional microsomal dispersions, most likely because of better accessibility of the enzymes. Ketoconazole (KET) and quinidine (QIN), substrates specific to cyt P450 3A enzymes, were used to demonstrate applicability to establish potentially toxic drug-drug interactions involving enzyme inhibition and acceleration.


Assuntos
Cromanos/química , Citocromo P-450 CYP3A/metabolismo , Diclofenaco/química , Microssomos Hepáticos/enzimologia , Cloridrato de Raloxifeno/química , Tiazolidinedionas/química , Animais , Reatores Biológicos , Cromanos/análise , Cromanos/metabolismo , Cromatografia Líquida , Citocromo P-450 CYP3A/química , Inibidores do Citocromo P-450 CYP3A , Diclofenaco/análise , Diclofenaco/metabolismo , Humanos , Cetoconazol/farmacologia , Espectrometria de Massas , Nanopartículas/química , Quinidina/farmacologia , Cloridrato de Raloxifeno/análise , Cloridrato de Raloxifeno/metabolismo , Ratos , Dióxido de Silício/química , Tiazolidinedionas/análise , Tiazolidinedionas/metabolismo , Troglitazona
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA