Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Environ Monit Assess ; 196(5): 435, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587761

RESUMO

Simple and sensitive electrochemical sensors were fabricated from cerium oxide (CeO2) and copper-benzene tricarboxylic acid-modified cerium oxide (CeO2-Cu-BTC) materials for differential pulse voltammetric analysis of toxic cadmium (Cd) ions in aqueous solutions. The materials were prepared by hydrothermal method and structurally characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy with energy-dispersive X-ray (SEM-EDX), thermogravimetric analysis (TGA), and X-ray diffraction analysis (XRD). The CeO2-modified carbon paste electrode (CeCPE) and the CeO2-Cu-BTC-modified carbon paste electrode (CeBCPE) were electrochemically characterized by their cyclic voltammetry and electrochemical impedance study in standard K3[Fe(CN)6] single-electron redox process. Their electrochemical surface areas, electrode surface coverages, and charge transfer resistances were calculated to be 1.46 cm2, 2.338 × 10-5 mol∙cm-2, and 2790 Ω and 5.48 cm2, 2.476 × 10-5 mol∙cm-2, and 1254.65 Ω for CeCPE and CeBCPE, respectively. These fabricated electrodes were used as electrochemical sensors for cadmium ion estimation by optimizing the experimental parameters through differential pulse voltammetry. The optimized conditions included 10% modifier for CeCPE and 5% modifier for CeBCPE in 0.12 M HCl solution of pH 5 as supporting electrolyte at - 1.2 V deposition for 30 s in 0.01 to 10 mg L-1 linear cadmium solution range. Under these conditions, the limit of quantification (LOQ) of 0.368 mg L-1 and 0.005 mg L-1 was calculated for CeCPE and CeBCPE electrodes, respectively. The limit of detection (LOD) was calculated to be 0.121 mg L-1 and 0.002 mg L-1 for CeCPE and CeBCPE, respectively. All the experimental results indicated that electrodes fabricated from CeO2-Cu-BTC show better performance as compared to CeO2-based electrodes. Both these types of electrochemical sensors presented good repeatability and performance in the presence of interfering ions as well. From these findings, it can also be inferred that these electrochemical sensors can provide a simple and very sensitive method for approximation of toxic cadmium ions in aqueous solutions.


Assuntos
Cádmio , Cério , Cobre , Cicloexanos , Monitoramento Ambiental , Íons , Carbono
3.
Microorganisms ; 11(10)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37894173

RESUMO

Mycoviruses, or fungal viruses, are prevalent in all significant fungal kingdoms and genera. These low-virulence viruses can be used as biocontrol agents to manage fungal diseases. These viruses are divided into 19 officially recognized families and 1 unclassified genus. Mycoviruses alter sexual reproduction, pigmentation, and development. Spores and fungal hypha spread mycoviruses. Isometric particles mostly encapsulate dsRNA mycoviruses. The widespread plant-pathogenic fungus Rhizoctonia solani, which has caused a rice sheath blight, has hosted many viruses with different morphologies. It causes significant crop diseases that adversely affect agriculture and the economy. Rice sheath blight threatens the 40% of the global population that relies on rice for food and nutrition. This article reviews mycovirology research on Rhizoctonia solani to demonstrate scientific advances. Mycoviruses control rice sheath blight. Hypovirulence-associated mycoviruses are needed to control R. solani since no cultivars are resistant. Mycoviruses are usually cryptic, but they can benefit the host fungus. Phytopathologists may use hypovirulent viruses as biological control agents. New tools are being developed based on host genome studies to overcome the intellectual challenge of comprehending the interactions between viruses and fungi and the practical challenge of influencing these interactions to develop biocontrol agents against significant plant pathogens.

4.
Front Microbiol ; 14: 1153437, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37143531

RESUMO

Rice production is severely hampered by the bakanae disease (Fusarium fujikuroi), formerly recognized as Fusarium moniliforme. F. moniliforme was called the F. fujikuroi species complex (FFSC) because it was later discovered that it had some separate species. The FFSC's constituents are also well recognized for producing phytohormones, which include auxins, cytokinin, and gibberellins (GAs). The normal symptoms of bakanae disease in rice are exacerbated by GAs. The members of the FFSC are responsible for the production of fumonisin (FUM), fusarins, fusaric acid, moniliformin, and beauvericin. These are harmful to both human and animal health. This disease is common around the world and causes significant yield losses. Numerous secondary metabolites, including the plant hormone gibberellin, which causes classic bakanae symptoms, are produced by F. fujikuroi. The strategies for managing bakanae, including the utilization of host resistance, chemical compounds, biocontrol agents, natural goods, and physical approaches, have been reviewed in this study. Bakanae disease is still not entirely preventable, despite the adoption of many different tactics that have been used to manage it. The benefits and drawbacks of these diverse approaches are discussed by the authors. The mechanisms of action of the main fungicides as well as the strategies for resistance to them are outlined. The information compiled in this study will contribute to a better understanding of the bakanae disease and the development of a more effective management plan for it.

5.
Pharmaceutics ; 13(5)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064792

RESUMO

The current study was designed to convert the poloxamer (PLX) into thiolated poloxamer (TPLX), followed by its physicochemical, biocompatibilities studies, and applications as a pharmaceutical excipient in the development of tacrolimus (TCM)-containing compressed tablets. Thiolation was accomplished by using thiourea as a thiol donor and hydrochloric acid (HCl) as a catalyst in the reaction. Both PLX and TPLX were evaluated for surface morphology based on SEM, the crystalline or amorphous nature of the particles, thiol contents, micromeritics, FTIR, and biocompatibility studies in albino rats. Furthermore, the polymers were used in the development of compressed tablets. Later, they were also characterized for thickness, diameter, hardness, weight variation, swelling index, disintegration time, mucoadhesion, and in vitro drug release. The outcomes of the study showed that the thiolation process was accomplished successfully, which was confirmed by FTIR, where a characteristic peak was noticed at 2695.9968 cm-1 in the FTIR scan of TPLX. Furthermore, the considerable concentration of the thiol constituents (20.625 µg/g of the polymer), which was present on the polymeric backbone, also strengthened the claim of successful thiolation. A mucoadhesion test illustrated the comparatively better mucoadhesion strength of TPLX compared to PLX. The in vitro drug release study exhibited that the TPLX-based formulation showed a more rapid (p < 0.05) release of the drug in 1 h compared to the PLX-based formulation. The in vivo toxicity studies confirmed that both PLX and TPLX were safe when they were administered to the albino rats. Conclusively, the thiolation of PLX made not only the polymer more mucoadhesive but also capable of improving the dissolution profile of TCM.

6.
Front Pharmacol ; 12: 550020, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122054

RESUMO

Background: Nature has always been considered as the primary source of pharmaceutical ingredients. A variety of hemicelluloses, as well as their modified forms, have been under investigation. Herein, a study was designed to explore the biocompatibility of hemicellulose and its modified form (thiolated hemicellulose) as well as its potential as a pharmaceutical excipient. Method: For thiol modification thiourea was used as the thiol donor, HCl as the catalytic reagent, and methanol was used for washing purposes. Modified polymers were characterized for physicochemical characteristics, including surface morphology, the amorphous or crystalline nature of the particles, modification of polymer by FTIR, and biocompatibilities. For acute oral toxicity study, a single dose of 2 g/kg was administered to albino rats of 200 g average weight (n = 3). Polymers were evaluated as pharmaceutical excipients by preparing compressed tablets of antiplatelet drug (Ticagrelor), followed by various quality control tests, such as swelling index, thickness and diameter, disintegration, and in-vitro drug release. Results: From the results, it was observed that thiol modification has been successfully accomplished as characteristic peaks belonging to -SH group appeared at 2667.7691 cm-1 in FTIR scan. The modified polymer was found safe in the use concentration range, confirming their safe use for in vivo analysis. No significant effect has been observed in the behavior, biological fluid (blood), or on vital organs. Thiolated hemicellulose was found to be an excellent drug retarding polymer as 8 h of dissolution studies showed that 67.08% of the drug has been released. Conclusion: Conclusively, incorporation of thiol moiety made the polymer more mucoadhesive with, and a worthy carrier of, the drug with good biocompatibilities.

7.
Biomed Mater ; 16(1): 015023, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33027771

RESUMO

Thiol modification of beta cyclodextrin (ß-CD) was carried out using thiourea, which served as a thiol donor. The chemical reaction was mediated using HCl. Polymer prepared via thiolation was further subjected to physicochemical and biocompatible analysis. Acute oral toxicity and compatibility was determined in albino rats. Furthermore, compressed tablets of ticagrelor (TCG) were prepared using modified and unmodified polymers and evaluated via various quality control tests. Thiolation was successfully achieved and confirmed by the FTIR scan, as a significant corresponding peak was observed at 2692 cm-1 wavenumber, demonstrating the attachment of -SH group. In vivo analysis has confirmed the safe use of ß-CD, as none of the vital organs showed any kind of toxic effects. Dissolution studies revealed that Tß-CD was able to release 96.62% of the drug within 1 h of the study, hence providing an immediate release. Conclusively, a thiol moiety was successfully attached to the polymeric backbone and was found safe to be used as a pharmaceutical excipient.


Assuntos
Portadores de Fármacos/química , Portadores de Fármacos/síntese química , Ticagrelor/administração & dosagem , beta-Ciclodextrinas/química , beta-Ciclodextrinas/síntese química , Administração Oral , Animais , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/toxicidade , Portadores de Fármacos/toxicidade , Sistemas de Liberação de Medicamentos , Teste de Materiais , Polímeros/síntese química , Polímeros/química , Polímeros/toxicidade , Ratos , Comprimidos , Tioaçúcares/síntese química , Tioaçúcares/química , Tioaçúcares/toxicidade , Tioureia/química , beta-Ciclodextrinas/toxicidade
8.
Methods Mol Biol ; 1487: 255-267, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27924573

RESUMO

Organotypic models are 3D in vitro representations of an in vivo environment. Their complexity can range from an epidermal replica to the establishment of a cancer microenvironment. These models have been used for many years, in an attempt to mimic the structure and function of cells and tissues found inside the body. Methods for developing 3D organotypic models differ according to the tissue of interest and the experimental design. For example, cultures may be grown submerged in culture medium and or at an air-liquid interface. Our group is focusing on an air-liquid interface 3D organotypic model. These cultures are grown on a nylon membrane-covered metal grid with the cells embedded in a Collagen-Matrigel gel. This allows cells to grow in an air-liquid interface to enable diffusion and nourishment from the medium below. Subsequently, the organotypic cultures can be used for immunohistochemical staining of various components of ERK signaling, which is a key player in mediating communication between cells and their microenvironment.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Modelos Biológicos , Técnicas de Cultura de Órgãos , Transdução de Sinais , Células Cultivadas , Células Epiteliais , Humanos , Imuno-Histoquímica
9.
Gen Comp Endocrinol ; 170(2): 334-45, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20965191

RESUMO

Zebrafish embryos are emerging as models of glucose metabolism. However, patterns of endogenous glucose levels, and the role of the islet in glucoregulation, are unknown. We measured absolute glucose levels in zebrafish and mouse embryos, and demonstrate similar, dynamic glucose fluctuations in both species. Further, we show that chemical and genetic perturbations elicit mammalian-like glycemic responses in zebrafish embryos. We show that glucose is undetectable in early zebrafish and mouse embryos, but increases in parallel with pancreatic islet formation in both species. In zebrafish, increasing glucose is associated with activation of gluconeogenic phosphoenolpyruvate carboxykinase1 (pck1) transcription. Non-hepatic Pck1 protein is expressed in mouse embryos. We show using RNA in situ hybridization, that zebrafish pck1 mRNA is similarly expressed in multiple cell types prior to hepatogenesis. Further, we demonstrate that the Pck1 inhibitor 3-mercaptopicolinic acid suppresses normal glucose accumulation in early zebrafish embryos. This shows that pre- and extra-hepatic pck1 is functional, and provides glucose locally to rapidly developing tissues. To determine if the primary islet is glucoregulatory in early fish embryos, we injected pdx1-specific morpholinos into transgenic embryos expressing GFP in beta cells. Most morphant islets were hypomorphic, not a genetic, but embryos still exhibited persistent hyperglycemia. We conclude from these data that the early zebrafish islet is functional, and regulates endogenous glucose. In summary, we identify mechanisms of glucoregulation in zebrafish embryos that are conserved with embryonic and adult mammals. These observations justify use of this model in mechanistic studies of human metabolic disease.


Assuntos
Embrião não Mamífero/metabolismo , Glucose/metabolismo , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Desenvolvimento Embrionário/efeitos dos fármacos , Proteínas de Fluorescência Verde/análise , Hibridização In Situ , Células Secretoras de Insulina/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/fisiologia , Filogenia , Ácidos Picolínicos/farmacologia , RNA Mensageiro/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA