Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Neurophysiol ; 132(3): 1038-1055, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39140591

RESUMO

Murine organotypic brain slice cultures have been widely used in neuroscientific research and are offering the opportunity to study neuronal function under normal and disease conditions. Despite the broad application, the mechanisms governing the maturation of immature cortical circuits in vitro are not well understood. In this study, we present a detailed investigation into the development of the neocortex in vitro. Using a holistic approach, we studied organotypic whole hemisphere brain slice cultures from postnatal mice and tracked the development of the somatosensory area over a 5-wk period. Our analysis revealed the maturation of passive and active intrinsic properties of pyramidal cells together with their morphology, closely resembling in vivo development. Detailed multielectrode array (MEA) electrophysiological assessments and RNA expression profiling demonstrated stable network properties by 2 wk in culture, followed by the transition of spontaneous activity toward more complex patterns including high-frequency oscillations. However, culturing weeks 4 and 5 exhibited increased variability and initial signs of neuronal loss, highlighting the importance of considering developmental stages in experimental design. This comprehensive characterization is vital for understanding the temporal dynamics of the neocortical development in vitro, with implications for neuroscientific research methodologies, particularly in the investigation of diseases such as epilepsy and other neurodevelopmental disorders.NEW & NOTEWORTHY The development of the mouse neocortex in vitro mimics the in vivo development. Mouse brain cultures can serve as a model system for cortical development for the first 2 wk in vitro and as a model system for the adult cortex from 2 to 4 wk in vitro. Mouse organotypic brain slice cultures develop high-frequency network oscillations at γ frequency after 2 wk in vitro. Mouse brain cultures exhibit increased heterogeneity and variability after 4 wk in culture.


Assuntos
Neocórtex , Técnicas de Cultura de Órgãos , Animais , Neocórtex/crescimento & desenvolvimento , Neocórtex/citologia , Neocórtex/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Células Piramidais/fisiologia
2.
Commun Biol ; 7(1): 885, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033173

RESUMO

Rhythmic brain activity is critical to many brain functions and is sensitive to neuromodulation, but so far very few studies have investigated this activity on the cellular level in vitro in human brain tissue samples. This study reveals and characterizes a novel rhythmic network activity in the human neocortex. Using intracellular patch-clamp recordings of human cortical neurons, we identify large rhythmic depolarizations (LRDs) driven by glutamate release but not by GABA. These LRDs are intricate events made up of multiple depolarizing phases, occurring at ~0.3 Hz, have large amplitudes and long decay times. Unlike human tissue, rat neocortex layers 2/3 exhibit no such activity under identical conditions. LRDs are mainly observed in a subset of L2/3 interneurons that receive substantial excitatory inputs and are likely large basket cells based on their morphology. LRDs are highly sensitive to norepinephrine (NE) and acetylcholine (ACh), two neuromodulators that affect network dynamics. NE increases LRD frequency through ß-adrenergic receptor activity while ACh decreases it via M4 muscarinic receptor activation. Multi-electrode array recordings show that NE enhances and synchronizes oscillatory network activity, whereas ACh causes desynchronization. Thus, NE and ACh distinctly modulate LRDs, exerting specific control over human neocortical activity.


Assuntos
Acetilcolina , Neocórtex , Norepinefrina , Humanos , Acetilcolina/farmacologia , Norepinefrina/farmacologia , Neocórtex/fisiologia , Neocórtex/metabolismo , Neocórtex/citologia , Neocórtex/efeitos dos fármacos , Masculino , Feminino , Animais , Pessoa de Meia-Idade , Ratos , Idoso , Periodicidade , Neurônios/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Interneurônios/fisiologia , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Adulto
3.
J Neurosci Methods ; 404: 110055, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38184112

RESUMO

The investigation of the human brain at cellular and microcircuit level remains challenging due to the fragile viability of neuronal tissue, inter- and intra-variability of the samples and limited availability of human brain material. Especially brain slices have proven to be an excellent source to investigate brain physiology and disease at cellular and small network level, overcoming the temporal limits of acute slices. Here we provide a revised, detailed protocol of the production and in-depth knowledge on long-term culturing of such human organotypic brain slice cultures for research purposes. We highlight the critical pitfalls of the culturing process of the human brain tissue and present exemplary results on viral expression, single-cell Patch-Clamp recordings, as well as multi-electrode array recordings as readouts for culture viability, enabling the use of organotypic brain slice cultures of these valuable tissue samples for basic neuroscience and disease modeling (Fig. 1).


Assuntos
Encéfalo , Neurônios , Humanos , Encéfalo/metabolismo , Neurônios/fisiologia , Eletrodos , Técnicas de Cultura de Órgãos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA