Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 416(13): 3149-3160, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38563959

RESUMO

Bats are the second largest mammalian order and are an endangered species group with a strong need for contamination monitoring. To facilitate non-invasive monitoring of the ecological burden in bat populations, a multiresidue method for the simultaneous quantification of 119 analytes including pesticides, persistent organic pollutants (POPs), active pharmaceutical ingredients (APIs), polycyclic aromatic hydrocarbons (PAHs), UV blockers, plasticizers, and other emerging pollutants in bat guano with gas chromatography tandem mass spectrometry (GC-MS/MS) was developed. Sample preparation and clean-up were performed with a modified QuEChERS approach based on DIN EN 15662. The method uses 1.00 g bat guano as sample with acetonitrile and water for liquid-liquid extraction. Phase separation is assisted by citrate-buffered salting out agent. For clean-up of the extract, primary secondary amine (PSA) was combined with graphitized carbon black (GCB). The lower limits of quantification (LLOQ) ranged between 2.5 and 250 µg kg-1. Linearity was shown in a concentration range from the respective LLOQs to 1250 µg kg-1. The median of the mean recovery was 102.4%. Precision was tested at three concentrations. Method and injection precision were adequate with a relative standard deviation (RSD) below 20%. Furthermore, the comparative analysis with LC-MS/MS demonstrated the reliability of the results and provided a valuable extension of the analytical scope. As proof of concept, three guano samples from a German nursery roost of Myotis myotis were analysed. The results show a time-dependent change in contaminant concentration, highlighting the strong need for non-invasive contamination monitoring of whole bat populations.


Assuntos
Quirópteros , Cromatografia Gasosa-Espectrometria de Massas , Limite de Detecção , Espectrometria de Massas em Tandem , Animais , Espectrometria de Massas em Tandem/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Hidrocarbonetos Policíclicos Aromáticos/análise , Reprodutibilidade dos Testes , Extração Líquido-Líquido/métodos , Monitoramento Ambiental/métodos
2.
Chemosphere ; 331: 138840, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37149096

RESUMO

A simple acetonitrile-based extraction method for the determination of 98 current-use pesticides (CUPs) in soil and herbaceous vegetation using HPLC-ESI-MS/MS is reported. The method was optimized in terms of extraction time, buffer (ammonium formate) ratio, and graphitized carbon black (GCB) ratio for the clean-up of vegetation. The validated method yielded accuracy in terms of percentage recovery of 71-125% (soil) and 70-117% (vegetation) for the majority of 98 CUPs. The precision in terms of relative standard deviation was at 1-14% (soil), and 1-13% (vegetation). Matrix-matched calibration curves exhibited good linearities (R2 > 0.99). The limits of quantitation ranged between 0.008 and 21.5 µg kg-1 in soil and vegetation. The reported method was applied to soils and vegetation from 13 agricultural sites across Germany. Overall, 44 of the 98 common CUPs were detected in our samples and the qualitative load is well above the average for arable soils in the EU.


Assuntos
Praguicidas , Praguicidas/análise , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Solo , Acetonitrilas , Plantas , Extração em Fase Sólida/métodos
3.
Sci Rep ; 11(1): 24144, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34916546

RESUMO

In Germany, the decline of insect biomass was observed in nature conservation areas in agricultural landscapes. One of the main causal factors discussed is the use of synthetic pesticides in conventional agriculture. In a Germany-wide field study, we collected flying insects using Malaise traps in nature conservation areas adjacent to agricultural land. We used a multi-component chemical trace element analysis to detect 92 common agricultural pesticides in ethanol from insect traps sampled in May and August 2020. In total, residues of 47 current use pesticides were detected, and insect samples were on average contaminated with 16.7 pesticides. Residues of the herbicides metolachlor-S, prosulfocarb and terbuthylazine, and the fungicides azoxystrobin and fluopyram were recorded at all sites. The neonicotinoid thiacloprid was detected in 16 of 21 nature conservation areas, most likely due to final use before an EU-wide ban. A change in residue mixture composition was noticeable due to higher herbicide use in spring and increasing fungicide applications in summer. The number of substances of recorded residues is related to the proportion of agricultural production area in a radius of 2000 m. Therefore, a drastic pesticide reduction in large buffers around nature conservation areas is necessary to avoid contamination of their insect fauna.


Assuntos
Agricultura , Conservação dos Recursos Naturais , Insetos , Resíduos de Praguicidas/análise , Praguicidas , Animais , Monitoramento Ambiental , Poluição Ambiental/prevenção & controle , Alemanha , Estações do Ano , Oligoelementos/análise
4.
Aquat Toxicol ; 232: 105762, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33561742

RESUMO

Antimicrobials, such as fungicides and antibiotics, pose a risk for microbial decomposers (i.e., bacteria and aquatic fungi) and invertebrate detritivores (i.e., shredders) that play a pivotal role in the ecosystem function of leaf litter breakdown. Although waterborne toxicity and diet-related effects (i.e., dietary exposure and microorganism-mediated alterations in food quality for shredders) of fungicides and antibiotics on decomposer-detritivore systems have been increasingly documented, their joint effect is unknown. We therefore assessed waterborne and dietary effects of an antimicrobial mixture consisting of the fungicide azoxystrobin (AZO) and the antibiotic ciprofloxacin (CIP) on microbial decomposers and the shredder Gammarus fossarum using a tiered approach. We compared effect sizes measured in the present study with model predictions (i.e., independent action) based on published data. During a 7-day feeding activity assay quantifying waterborne toxicity in G. fossarum, the leaf consumption of gammarids was reduced by ∼60 % compared to the control when subjected to the mixture at concentrations of each component causing a 20 % reduction in the same response variable when applied individually. Moreover, the selective feeding of gammarids during the food choice assay indicated alterations in food quality induced by the antimicrobial mixture. The food selection and, in addition, the decrease in microbial leaf decomposition is likely linked to changes in leaf-associated bacteria and fungi. During a long-term assay, energy processing, growth and energy reserves of gammarids were increased in presence of 15 and 500 µg/L of AZO and CIP, respectively, through the dietary pathway. These physiological responses were probably driven by CIP-induced alterations in the gut microbiome or immune system of gammarids. In general, model predictions matched observed effects caused by waterborne exposure on the leaf consumption, energy processing and growth of gammarids during short- and long-term assays, respectively. However, when complex horizontal (bacteria and aquatic fungi) and vertical (leaf-associated microorganisms and shredders) interactions were involved, model predictions partly over- or underestimated mixture effects. Therefore, the present study identifies uncertainties of mixture effect predictions for complex biological systems calling for studies targeting the underlying processes and mechanisms.

5.
Sci Total Environ ; 740: 140376, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-32927560

RESUMO

Pesticide concentrations in agricultural streams are often characterised by a low level of baseline exposure and episodic peak concentrations associated with heavy rainfall events. Traditional sampling methods such as grab sampling, which are still largely used in governmental monitoring, typically miss peak concentrations. Passive sampling represents a cost-efficient alternative but requires the additional determination of sampling rates to calculate time-weighted average (TWA) water concentrations from the accumulated pesticide mass in the sampler. To date, sampling rates have largely been determined in experiments with constant exposure, which does not necessarily reflect field situations. Using Empore styrene-divinylbenzene (SDB) passive sampler disks mounted in metal holders, we determined sampling rates for 42 organic pesticides, of which 27 sampling rates were lacking before. The SDB disks were in an artificial channel system exposed to a field-relevant pesticide peak. We used an open-source algorithm to estimate coefficients of equations for the accumulated pesticide mass in disks and to determine exposure time-dependent sampling rates. These sampling rates ranged from 0.02 to 0.98 L d-1 and corresponded to those from previous studies determined with constant exposure. The prediction of sampling rates using compound properties was unreliable. Hence, experiments are required to determine reliable sampling rates. We discuss the use of passive sampling to estimate peak concentrations. Overall, our study provides sampling rates and computer code to determine these under peak exposure designs and suggests that passive sampling is suitable to estimate peak pesticide concentrations in field studies.

6.
Chemosphere ; 259: 127459, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32610176

RESUMO

To assess potential aquatic pesticide risks, environmental monitoring strategies often focus on water and sediment. However, knowledge gaps with regard to the pollution status of organic matrices important for the structure and functioning of aquatic ecosystems do exist. The present study assessed the dissipation of the triazole fungicide tebuconazole (TEB; KOW = 5.01 × 103) and the pyrethroid insecticide etofenprox (ETO; KOW = 7.94 × 106) as model hydrophobic pesticide compounds among aquatic plants, vertical layers of allochthonous leaf litter, and detritus within flow-through outdoor stream mesocosms. During a 3-h pesticide exposure and a subsequent 24-h post-exposure period, retention was higher for ETO (max concentration: Myriophyllum spicatum > Elodea nuttallii > Ranunculus fluitans > Potamogeton perfoliatus â‰« leaf litter > detritus) and depended amongst other factors on surface area, while in the water compartment the pesticides reached concentration levels < LOQ 2 h after exposure. Desorption was observed for both pesticides in plants, and for TEB in detritus, while in leaves the ETO levels even increased over time, suggesting leaf litter to be a suitable additional sampling matrix for transient hydrophobic pesticide peaks, yet also a potential source of contamination for invertebrate shredders. The upper layer of leaf material contained higher ETO levels than those situated further in the sediment, which implies short-term positive effects for species inhabiting the deeper leaf layers, yet again pinpoints to a potential pesticide exposure pathway via organic matter in aquatic systems.


Assuntos
Monitoramento Ambiental , Praguicidas/análise , Poluentes Químicos da Água/análise , Animais , Ecossistema , Fungicidas Industriais , Hydrocharitaceae/metabolismo , Invertebrados/metabolismo , Folhas de Planta/metabolismo , Piretrinas , Rios/química , Água/química
7.
Environ Toxicol Chem ; 39(11): 2237-2246, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33464613

RESUMO

In surface waters, the illumination of photoactive engineered nanomaterials (ENMs) with ultraviolet (UV) light triggers the formation of reactive intermediates, consequently altering the ecotoxicological potential of co-occurring organic micropollutants including pesticides due to catalytic degradation. Simultaneously, omnipresent natural organic matter (NOM) adsorbs onto ENM surfaces, altering the ENM surface properties. Also, NOM absorbs light, reducing the photo(cata)lytic transformation of pesticides. Interactions between these environmental factors impact 1) directly the ecotoxicity of photoactive ENMs, and 2) indirectly the degradation of pesticides. We assessed the impact of field-relevant UV radiation (up to 2.6 W UVA/m²), NOM (4 mg TOC/L), and photoactive ENM (nTiO2, 50 µg/L) on the acute toxicity of 6 pesticides in Daphnia magna. We selected azoxystrobin, dimethoate, malathion, parathion, permethrin, and pirimicarb because of their varying photo- and hydrolytic stabilities. Increasing UVA alone partially reduced pesticide toxicity, seemingly due to enhanced degradation. Even at 50 µg/L, nano-sized titanium dioxide (nTiO2) reduced but also increased pesticide toxicity (depending on the applied pesticide), which is attributable to 1) more efficient degradation and potentially 2) photocatalytically induced formation of toxic by-products. Natural organic matter 1) partially reduced pesticide toxicity, not evidently accompanied by enhanced pesticide degradation, but also 2) inhibited pesticide degradation, effectively increasing the pesticide toxicity. Predicting the ecotoxicological potential of pesticides based on their interaction with UV light or interaction with NOM was hardly possible, which was even more difficult in the presence of nTiO2. Environ Toxicol Chem 2020;39:2237-2246. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Nanopartículas/química , Compostos Orgânicos/química , Praguicidas/química , Titânio/química , Raios Ultravioleta , Animais , Catálise , Daphnia/efeitos dos fármacos , Dimetoato/química , Dimetoato/efeitos da radiação , Dimetoato/toxicidade , Malation/química , Malation/efeitos da radiação , Malation/toxicidade , Praguicidas/efeitos da radiação , Praguicidas/toxicidade , Poluentes Químicos da Água/química , Poluentes Químicos da Água/efeitos da radiação , Poluentes Químicos da Água/toxicidade
8.
Bull Environ Contam Toxicol ; 103(4): 507-514, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31529138

RESUMO

Systemic pesticides, such as the neonicotinoid imidacloprid, can be introduced into aquatic ecosystems through contaminated plant material, which is the basis for detrital (brown) aquatic food-webs. With the aim of exemplarily assessing for indirect effects on the level of predators, we first offered imidacloprid contaminated and uncontaminated alder leaves to the stonefly shredder Protonemura sp. for 72 h. Shredder survival, leaf decomposition, body length and biomass were all between 20% and 50% lower under imidacloprid exposure compared to uncontaminated conditions, indicating physiological implications. Subsequently, these shredders were provided as prey to stonefly predators (Isoperla sp.) kept in cages in a stream. Predator biomass and length decreased by up to 11% and 4.3%, respectively, when feeding on imidacloprid exposed prey. Our study hence suggests that plant material contaminated with systemic pesticides can exert adverse effects in aquatic predators when preying on shredders consuming such leaves, which warrants a further consideration of this pathway.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Cadeia Alimentar , Modelos Teóricos , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Praguicidas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Organismos Aquáticos/química , Neonicotinoides/análise , Nitrocompostos/análise , Praguicidas/análise , Poluentes Químicos da Água/análise
9.
Chemosphere ; 216: 587-594, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30390589

RESUMO

Understanding fate and transport of plant protection products (PPPs) that enter vegetated streams from agricultural fields is important for both exposure assessment and risk attenuation, yet limited knowledge is available. The present laboratory study investigated sorption processes governing mass transfer of three common PPPs between water and aquatic plant phases at flow-through exposure conditions (transient aqueous-phase PPP-peak of 4 h 25 min) using three temperature regimes. The exposure produced rapid sorption of PPPs to plants, followed by a gradual depuration from plants. Dynamic sorption kinetics depended on temperature, plant species, and physicochemical properties of the PPPs. Sorption to plants contributed to a 10% reduction of the water-phase peak concentrations of the PPPs. However, being reversible, the attenuation effect was limited to the residence time of the PPPs in the systems. Results of the present study highlight that effectivity of aquatic plants in the attenuation of PPP loads may vary greatly depending on hydrodynamic properties of aquatic systems.


Assuntos
Anilidas/metabolismo , Benzamidas/metabolismo , Compostos de Fenilureia/metabolismo , Plantas/metabolismo , Substâncias Protetoras/metabolismo , Rios/química , Água/química , Inseticidas/metabolismo
10.
Sci Total Environ ; 610-611: 810-819, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28826119

RESUMO

Agricultural land-use frequently results in short pulse exposures of insecticides such as pyrethroids in river systems, adversely affecting local invertebrate communities. In order to assess insecticide-induced effects, stream mesocosms are used within higher tier aquatic risk assessment. Regulatory acceptable concentrations (RACs) derived from those studies are often higher compared with tier 1 RACs. Hence, the present mesocosm study evaluates this aspect using a pulse exposure scenario typical for streams and the pyrethroid insecticide etofenprox. A 6-h pulse exposure with measured concentrations of 0.04, 0.3 and 5.3µgL-1 etofenprox was used. We considered abundance, drift and emergence of invertebrates as structural endpoints and the in situ-measured feeding rates of the isopod Asellus aquaticus as functional endpoint. Most prominent effects were visible at 5.3µgL-1 etofenprox which caused adverse effects of up to 100% at the individual and population level, as well as community structure alterations. Transient effects were observed for invertebrate drift (effect duration ≤24h) and for the invertebrate community (9 days after exposure) at 0.3µgL-1 etofenprox. Furthermore, 0.04µgL-1 etofenprox affected the abundance of the mayfly Cloeon simile (decrease by 66%) and the feeding rate of A. aquaticus (decrease by 44%). Thus, implications for the functional endpoint leaf litter breakdown in heterotrophic ecosystems may be expected. A hypothetical RAC derived from the present mesocosm study (0.004µgL-1) is in line with the official tier 1 RAC (0.0044µgL-1) and thus shows that the present mesocosm study did not result in a higher RAC.


Assuntos
Insetos/efeitos dos fármacos , Inseticidas/toxicidade , Isópodes/efeitos dos fármacos , Rios/química , Poluentes Químicos da Água/toxicidade , Animais , Ecossistema , Piretrinas/toxicidade , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA