Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Mol Metab ; 86: 101979, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38945296

RESUMO

OBJECTIVE: Bariatric surgery is an effective treatment to obesity, leading to weight loss and improvement in glycemia, that is characterized by hypersecretion of gastrointestinal hormones. However, weight regain and relapse of hyperglycemia are not uncommon. We set to identify mechanisms that can enhance gastrointestinal hormonal secretion following surgery to sustain weight loss. METHODS: We investigated the effect of somatostatin (Sst) inhibition on the outcomes of bariatric surgery using a mouse model of sleeve gastrectomy (SG). RESULTS: Sst knockout (sst-ko) mice fed with a calorie-rich diet gained weight normally and had a mild favorable metabolic phenotype compared to heterozygous sibling controls, including elevated plasma levels of GLP-1. Mathematical modeling of the feedback inhibition between Sst and GLP-1 showed that Sst exerts its maximal effect on GLP-1 under conditions of high hormonal stimulation, such as following SG. Obese sst-ko mice that underwent SG had higher levels of GLP-1 compared with heterozygous SG-operated controls. The SG-sst-ko mice regained less weight than controls and maintained lower glycemia months after surgery. Obese wild-type mice that underwent SG and were treated daily with a Sst receptor inhibitor for two months had higher GLP-1 levels, regained less weight, and improved metabolic profile compared to saline-treated SG-operated controls, and compared to inhibitor or saline-treated sham-operated obese mice. CONCLUSIONS: Our results suggest that inhibition of Sst signaling enhances the long-term favorable metabolic outcomes of bariatric surgery.

2.
bioRxiv ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38895285

RESUMO

Mechanical forces applied to cells are known to regulate a wide variety of biological processes. Recent studies have supported that mechanical forces can cause nuclear deformation, leading to significant alterations in the gene expression and chromatin landscape of the cell. While the stresses and strains applied to cells is it is often known or controlled experimentally on a macroscopic length scale, it is often unclear what the actual forces and displacements are at the microscopic level of the cell. In this work, we created a model of cell deformation during application of mechanical stretch to cultured cells growth on a flexible membrane. This configuration is commonly used is in experimental studies as a means to apply controlled mechanical strains to adherent cultured cells. The parameters used in the study were used for application of strain to a mesenchymal stem cell stretched on a membrane. computational model was created to simulate the stresses and strains within the cell under a variety of stain amplitudes, waveforms and frequencies of mechanical loading with the range of commonly used experimental systems. The results demonstrate the connection between mechanical loading parameters applied through the flexible membrane and the resulting stresses and strains within the cell and nucleus. Using a viscoelastic model of chromatin, we connected the results provide to a rough model of resulting deformation within chromatin from the forces applied to the nucleus. Overall, the model is useful in providing insight between experimentally applied mechanical forces and the actual forces within the cell to better interpret the results of experimental studies. Statement of Significance: In this work, we created a computational model of the mechanical stretching of cell on a flexible membrane under cyclic mechanical loading. This model provides insight into the forces and displacements inside of cell that result from that application of stretch. As many experiments use this set up, our work is relevant to interpreting many studies that use mechanical stretch to stimulate mechanotransduction.

3.
bioRxiv ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38895474

RESUMO

Mesenchymal stem cells (MSC) are an appealing therapeutic cell type for many diseases. However, patients with poor health or advanced age often have MSCs with poor regenerative properties. A major limiter of MSC therapies is cellular senescence, which is marked by limited proliferation capability, diminished multipotency, and reduced regenerative properties. In this work, we explored the ability of applied mechanical forces to reduce cellular senescence in MSCs. Our studies revealed that mechanical conditioning caused a lasting enhancement in proliferation, overall cell culture expansion potential, multipotency, and a reduction of senescence in MSCs from aged donors. Mechanistic studies suggested that these functional enhancements were mediated by oxidative stress and DNA damage repair signaling with mechanical load altering the expression of proteins of the sirtuin pathway, the DNA damage repair protein ATM, and antioxidant proteins. In addition, our results suggest a biophysical mechanism in which mechanical stretch leads to improved recognition of damaged DNA in the nucleus. Analysis of the cells through RNA-seq and ATAC-seq, demonstrated that mechanical loading alters the cell's genetic landscape to cause broad shifts in transcriptomic patterns that related to senescence. Overall, our results demonstrate that mechanical conditioning can rejuvenate mesenchymal stem cells derived from aged patients and improve their potential as a therapeutic cell type.

4.
Sci Rep ; 14(1): 2352, 2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287067

RESUMO

Therapies to revascularize ischemic tissue have long been a goal for the treatment of vascular disease and other disorders. Therapies using stem cell factor (SCF), also known as a c-Kit ligand, had great promise for treating ischemia for myocardial infarct and stroke, however clinical development for SCF was stopped due to toxic side effects including mast cell activation in patients. We recently developed a novel therapy using a transmembrane form of SCF (tmSCF) delivered in lipid nanodiscs. In previous studies, we demonstrated tmSCF nanodiscs were able to induce revascularization of ischemia limbs in mice and did not activate mast cells. To advance this therapeutic towards clinical application, we tested this therapy in an advanced model of hindlimb ischemia in rabbits with hyperlipidemia and diabetes. This model has therapeutic resistance to angiogenic therapies and maintains long term deficits in recovery from ischemic injury. We treated rabbits with local treatment with tmSCF nanodiscs or control solution delivered locally from an alginate gel delivered into the ischemic limb of the rabbits. After eight weeks, we found significantly higher vascularity in the tmSCF nanodisc-treated group in comparison to alginate treated control as quantified through angiography. Histological analysis also showed a significantly higher number of small and large blood vessels in the ischemic muscles of the tmSCF nanodisc treated group. Importantly, we did not observe inflammation or mast cell activation in the rabbits. Overall, this study supports the therapeutic potential of tmSCF nanodiscs for treating peripheral ischemia.


Assuntos
Diabetes Mellitus , Fator A de Crescimento do Endotélio Vascular , Humanos , Coelhos , Animais , Camundongos , Fator A de Crescimento do Endotélio Vascular/farmacologia , Neovascularização Fisiológica , Isquemia/patologia , Diabetes Mellitus/patologia , Alginatos/uso terapêutico , Membro Posterior/irrigação sanguínea
5.
Biomicrofluidics ; 17(4): 044105, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37614679

RESUMO

The blood-brain barrier is a key structure regulating the health of the brain and access of drugs and pathogens to neural tissue. Shear stress is a key regulator of the blood-brain barrier; however, the commonly used multi-well vitro models of the blood-brain barrier do not incorporate shear stress. In this work, we designed and validated a high-throughput system for simulating the blood-brain barrier that incorporates physiological flow and incorporates an optimized cellular model of the blood-brain barrier. This system can perform assays of blood-brain barrier function with shear stress, with 48 independent assays simultaneously. Using the high throughput assay, we conducted drug screening assays to explore the effects of compounds for opening or closing blood-brain barrier. Our studies revealed that assays with shear stress were more predictive and were able to identify compounds known to modify the blood-brain barrier function while static assays were not. Overall, we demonstrate an optimized, high throughput assay for simulating the blood-brain barrier that incorporates shear stress and is practical for use in drug screening and other high throughput studies of toxicology.

6.
Res Sq ; 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37398327

RESUMO

Therapies to revascularize ischemic tissue have long been a goal for the treatment of vascular disease and other disorders. Therapies using stem cell factor (SCF), also known as a c-Kit ligand, had great promise for treating ischemia for myocardial infarct and stroke, however clinical development for SCF was stopped due to toxic side effects including mast cell activation in patients. We recently developed a novel therapy using a transmembrane form of SCF (tmSCF) delivered in lipid nanodiscs. In previous studies, we demonstrated tmSCF nanodiscs were able to induce revascularization of ischemia limbs in mice and did not activate mast cells. To advance this therapeutic towards clinical application, we tested this therapy in an advanced model of hindlimb ischemia in rabbits with hyperlipidemia and diabetes. This model has therapeutic resistance to angiogenic therapies and maintains long term deficits in recovery from ischemic injury. We treated rabbits with local treatment with tmSCF nanodiscs or control solution delivered locally from an alginate gel delivered into the ischemic limb of the rabbits. After eight weeks, we found significantly higher vascularity in the tmSCF nanodisc-treated group in comparison to alginate treated control as quantified through angiography. Histological analysis also showed a significantly higher number of small and large blood vessels in the ischemic muscles of the tmSCF nanodisc treated group. Importantly, we did not observe inflammation or mast cell activation in the rabbits. Overall, this study supports the therapeutic potential of tmSCF nanodiscs for treating peripheral ischemia.

7.
Acta Biomater ; 167: 425-435, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37321528

RESUMO

Regenerative therapeutics for treating peripheral arterial disease are an appealing strategy for creating more durable solutions for limb ischemia. In this work, we performed preclinical testing of an injectable formulation of syndecan-4 proteoliposomes combined with growth factors as treatment for peripheral ischemia delivered in an alginate hydrogel. We tested this therapy in an advanced model of hindlimb ischemia in rabbits with diabetes and hyperlipidemia. Our studies demonstrate enhancement in vascularity and new blood vessel growth with treatment with syndecan-4 proteoliposomes in combination with FGF-2 or FGF-2/PDGF-BB. The effects of the treatments were particularly effective in enhancing vascularity in the lower limb with a 2-4 increase in blood vessels in the treatment group in comparison to the control group. In addition, we demonstrate that the syndecan-4 proteoliposomes have stability for at least 28 days when stored at 4°C to allow transport and use in the hospital environment. In addition, we performed toxicity studies in the mice and found no toxic effects even when injected at high concentration. Overall, our studies support that syndecan-4 proteoliposomes markedly enhance the therapeutic potential of growth factors in the context of disease and may be promising therapeutics for inducing vascular regeneration in peripheral ischemia. STATEMENT OF SIGNIFICANCE: Peripheral ischemia is a common condition in which there is a lack of blood flow to the lower limbs. This condition can lead to pain while walking and, in severe cases, critical limb ischemia and limb loss. In this study, we demonstrate the safety and efficacy of a novel injectable therapy for enhancing revascularization in peripheral ischemia using an advanced large animal model of peripheral vascular disease using rabbits with hyperlipidemia and diabetes.


Assuntos
Hiperlipidemias , Doenças Vasculares Periféricas , Coelhos , Camundongos , Animais , Sindecana-4/farmacologia , Sindecana-4/uso terapêutico , Fator 2 de Crescimento de Fibroblastos , Neovascularização Fisiológica , Isquemia/terapia , Membro Posterior/irrigação sanguínea , Modelos Animais de Doenças
8.
APL Bioeng ; 7(2): 026101, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37035541

RESUMO

Aortic valves (AVs) undergo unique stretch histories that include high rates and magnitudes. While major differences in deformation patterns have been observed between normal and congenitally defective bicuspid aortic valves (BAVs), the relation to underlying mechanisms of rapid disease onset in BAV patients remains unknown. To evaluate how the variations in stretch history affect AV interstitial cell (AVIC) activation, high-throughput methods were developed to impart varied cyclical biaxial stretch histories into 3D poly(ethylene) glycol hydrogels seeded with AVICs for 48 h. Specifically, a physiologically mimicking stretch history was compared to two stretch histories with varied peak stretch and stretch rate. Post-conditioned AVICs were imaged for nuclear shape, alpha smooth muscle actin (αSMA) and vimentin (VMN) polymerization, and small mothers against decapentaplegic homologs 2 and 3 (SMAD 2/3) nuclear activity. The results indicated that bulk gel deformations were accurately transduced to the AVICs. Lower peak stretches lead to increased αSMA polymerization. In contrast, VMN polymerization was a function of stretch rate, with SMAD 2/3 nuclear localization and nuclear shape also trending toward stretch rate dependency. Lower than physiological levels of stretch rate led to higher SMAD 2/3 activity, higher VMN polymerization around the nucleus, and lower nuclear elongation. αSMA polymerization did not correlate with VMN polymerization, SMAD 2/3 activity, nor nuclear shape. These results suggest that a negative feedback loop may form between SMAD 2/3, VMN, and nuclear shape to maintain AVIC homeostatic nuclear deformations, which is dependent on stretch rate. These novel results suggest that AVIC mechanobiological responses are sensitive to stretch history and provide insight into the mechanisms of AV disease.

9.
Liver Int ; 43(8): 1714-1728, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37057737

RESUMO

BACKGROUND AND AIMS: The molecular mechanisms driving non-alcoholic fatty liver disease (NAFLD) are poorly understood; however, microRNAs might play a key role in these processes. We hypothesize that let-7d-5p could contribute to the pathophysiology of NAFLD and serve as a potential diagnostic biomarker. METHODS: We evaluated let-7d-5p levels and its targets in liver biopsies from a cross-sectional study including patients with NAFLD and healthy donors, and from a mouse model of NAFLD. Moreover, the induction of let-7d-5p expression by fatty acids was evaluated in vitro. Further, we overexpressed let-7d-5p in vitro to corroborate the results observed in vivo. Circulating let-7d-5p and its potential as a NAFLD biomarker was determined in isolated extracellular vesicles from human plasma by RT-qPCR. RESULTS: Our results demonstrate that hepatic let-7d-5p was significantly up-regulated in patients with steatosis, and this increase correlated with obesity and a decreased expression of AKT serine/threonine kinase (AKT), insulin-like growth factor 1 (IGF1), IGF-I receptor (IGF1R) and insulin receptor (INSR). These alterations were corroborated in a NAFLD mouse model. In vitro, fatty acids increased let-7d-5p expression, and its overexpression decreased AKT, IGF-IR and IR protein expression. Furthermore, let-7d-5p hindered AKT phosphorylation in vitro after insulin stimulation. Finally, circulating let-7d-5p significantly decreased in steatosis patients and receiver operating characteristic (ROC) analyses confirmed its utility as a diagnostic biomarker. CONCLUSIONS: Our results highlight the emerging role of let-7d-5p as a potential therapeutic target for NAFLD since its overexpression impairs hepatic insulin signalling, and also, as a novel non-invasive biomarker for NAFLD diagnosis.


Assuntos
Resistência à Insulina , MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Biomarcadores , Estudos Transversais , Ácidos Graxos , Insulina , MicroRNAs/genética , MicroRNAs/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Proteínas Proto-Oncogênicas c-akt
10.
bioRxiv ; 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36993249

RESUMO

Therapies to revascularize ischemic tissue have long been a goal for the treatment of vascular disease and other disorders. Therapies using stem cell factor (SCF), also known as a c-Kit ligand, had great promise for treating ischemia for myocardial infarct and stroke, however clinical development for SCF was stopped due to toxic side effects including mast cell activation in patients. We recently developed a novel therapy using a transmembrane form of SCF (tmSCF) delivered in lipid nanodiscs. In previous studies, we demonstrated tmSCF nanodiscs were able to induce revascularization of ischemia limbs in mice and did not activate mast cells. To advance this therapeutic towards clinical application, we tested this therapy in an advanced model of hindlimb ischemia in rabbits with hyperlipidemia and diabetes. This model has therapeutic resistance to angiogenic therapies and maintains long term deficits in recovery from ischemic injury. We treated rabbits with local treatment with tmSCF nanodiscs or control solution delivered locally from an alginate gel delivered into the ischemic limb of the rabbits. After eight weeks, we found significantly higher vascularity in the tmSCF nanodisc-treated group in comparison to alginate treated control as quantified through angiography. Histological analysis also showed a significantly higher number of small and large blood vessels in the ischemic muscles of the tmSCF nanodisc treated group. Importantly, we did not observe inflammation or mast cell activation in the rabbits. Overall, this study supports the therapeutic potential of tmSCF nanodiscs for treating peripheral ischemia.

11.
Sensors (Basel) ; 23(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36991984

RESUMO

Regular commutes to work can cause chronic stress, which in turn can cause a physical and emotional reaction. The recognition of mental stress in its earliest stages is very necessary for effective clinical treatment. This study investigated the impact of commuting on human health based on qualitative and quantitative measures. The quantitative measures included electroencephalography (EEG) and blood pressure (BP), as well as weather temperature, while qualitative measures were established from the PANAS questionnaire, and included age, height, medication, alcohol status, weight, and smoking status. This study recruited 45 (n) healthy adults, including 18 female and 27 male participants. The modes of commute were bus (n = 8), driving (n = 6), cycling (n = 7), train (n = 9), tube (n = 13), and both bus and train (n = 2). The participants wore non-invasive wearable biosensor technology to measure EEG and blood pressure during their morning commute for 5 days in a row. A correlation analysis was applied to find the significant features associated with stress, as measured by a reduction in positive ratings in the PANAS. This study created a prediction model using random forest, support vector machine, naive Bayes, and K-nearest neighbor. The research results show that blood pressure and EEG beta waves were significantly increased, and the positive PANAS rating decreased from 34.73 to 28.60. The experiments revealed that measured systolic blood pressure was higher post commute than before the commute. For EEG waves, the model shows that the EEG beta low power exceeded alpha low power after the commute. Having a fusion of several modified decision trees within the random forest helped increase the performance of the developed model remarkably. Significant promising results were achieved using random forest with an accuracy of 91%, while K-nearest neighbor, support vector machine, and naive Bayes performed with an accuracy of 80%, 80%, and 73%, respectively.


Assuntos
Eletroencefalografia , Dispositivos Eletrônicos Vestíveis , Adulto , Humanos , Teorema de Bayes , Eletroencefalografia/métodos , Inquéritos e Questionários , Meios de Transporte , Máquina de Vetores de Suporte
12.
STAR Protoc ; 4(1): 102103, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36853695

RESUMO

Human mesenchymal stem cells (hMSCs) are an appealing cell type for therapeutic applications but remain limited by poor efficacy in clinical trials. Here, we describe a conditioning technique that enhances the vascular regenerative properties of hMSCs and increases their expression of endothelial cell and pericyte markers. We also describe an alginate gel encapsulation protocol for delivering the conditioned cells. For complete details on the use and execution of this protocol, please refer to Lee et al. (2021).1.


Assuntos
Células-Tronco Mesenquimais , Humanos , Pericitos
13.
PLoS Biol ; 20(12): e3001934, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36542656

RESUMO

Viruses must balance their reliance on host cell machinery for replication while avoiding host defense. Influenza A viruses are zoonotic agents that frequently switch hosts, causing localized outbreaks with the potential for larger pandemics. The host range of influenza virus is limited by the need for successful interactions between the virus and cellular partners. Here we used immunocompetitive capture-mass spectrometry to identify cellular proteins that interact with human- and avian-style viral polymerases. We focused on the proviral activity of heterogenous nuclear ribonuclear protein U-like 1 (hnRNP UL1) and the antiviral activity of mitochondrial enoyl CoA-reductase (MECR). MECR is localized to mitochondria where it functions in mitochondrial fatty acid synthesis (mtFAS). While a small fraction of the polymerase subunit PB2 localizes to the mitochondria, PB2 did not interact with full-length MECR. By contrast, a minor splice variant produces cytoplasmic MECR (cMECR). Ectopic expression of cMECR shows that it binds the viral polymerase and suppresses viral replication by blocking assembly of viral ribonucleoprotein complexes (RNPs). MECR ablation through genome editing or drug treatment is detrimental for cell health, creating a generic block to virus replication. Using the yeast homolog Etr1 to supply the metabolic functions of MECR in MECR-null cells, we showed that specific antiviral activity is independent of mtFAS and is reconstituted by expressing cMECR. Thus, we propose a strategy where alternative splicing produces a cryptic antiviral protein that is embedded within a key metabolic enzyme.


Assuntos
Ácidos Graxos Dessaturases , Vírus da Influenza A , Humanos , Ácidos Graxos Dessaturases/metabolismo , Processamento Alternativo/genética , Mitocôndrias/metabolismo , Vírus da Influenza A/genética , Isoformas de Proteínas/metabolismo , Replicação Viral
14.
Biomaterials ; 291: 121865, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36332287

RESUMO

OBJECTIVE: While lipid-lowering drugs have become a mainstay of clinical therapy these treatments only slow the progression of the disease and can have side effects. Thus, new treatment options are needed to supplement the effects of lipid lowering therapy for treating atherosclerosis. We examined the use of an inexpensive and widely available marine polysaccharide rhamnan sulfate as an oral therapeutic for limiting vascular inflammation and atherosclerosis. METHODS AND RESULTS: We found rhamnan sulfate enhanced the barrier function of endothelial cells, preventing the deposition of LDL and maintaining barrier function even in the presence of glycocalyx-degrading enzymes. Rhamnan sulfate was also found to bind directly to FGF-2, PDGF-BB and NF-κB subunits with high affinity. In addition, rhamnan sulfate was a potent inhibitor of NF-κB pathway activation in endothelial cells by TNF-α. We treated ApoE-/- mice with a high fat diet for 4 weeks and then an addition 9 weeks of high fat diet with or without rhamnan sulfate. Rhamnan sulfate reduced vascular inflammation and atherosclerosis in both sexes of ApoE-/- mice but had a stronger therapeutic effect in female mice. Oral consumption of rhamnan sulfate induced a significant decrease in cholesterol plasma levels in female mice but not in male mice. In addition, there was a marked reduction in inflammation for female mice in the liver and aortic root in comparison to male mice. CONCLUSIONS: Rhamnan sulfate has beneficial effects in reducing inflammation, binding growth factors and NF-κB, enhancing endothelial barrier function and reducing atherosclerotic plaque formation in ApoE-/- mice.


Assuntos
Aterosclerose , Placa Aterosclerótica , Masculino , Feminino , Camundongos , Animais , Placa Aterosclerótica/tratamento farmacológico , NF-kappa B/metabolismo , Células Endoteliais/metabolismo , Sulfatos , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Apolipoproteínas E/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Camundongos Endogâmicos C57BL
15.
Nat Commun ; 13(1): 2497, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35523773

RESUMO

Stem cell factor (SCF) is a cytokine that regulates hematopoiesis and other biological processes. While clinical treatments using SCF would be highly beneficial, these have been limited by toxicity related to mast cell activation. Transmembrane SCF (tmSCF) has differential activity from soluble SCF and has not been explored as a therapeutic agent. We created novel therapeutics using tmSCF embedded in proteoliposomes or lipid nanodiscs. Mouse models of anaphylaxis and ischemia revealed the tmSCF-based therapies did not activate mast cells and improved the revascularization in the ischemic hind limb. Proteoliposomal tmSCF preferentially acted on endothelial cells to induce angiogenesis while tmSCF nanodiscs had greater activity in inducing stem cell mobilization and recruitment to the site of injury. The type of lipid nanocarrier used altered the relative cellular uptake pathways and signaling in a cell type dependent manner. Overall, we found that tmSCF-based therapies can provide therapeutic benefits without off target effects.


Assuntos
Mastócitos , Fator de Células-Tronco , Animais , Células Endoteliais/metabolismo , Isquemia/metabolismo , Isquemia/terapia , Lipídeos , Mastócitos/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Fator de Células-Tronco/metabolismo
16.
Am J Physiol Endocrinol Metab ; 322(5): E414-E424, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35285295

RESUMO

One anastomosis gastric bypass (OAGB) surgery became a common bariatric procedure in recent years. In this surgery, the distal stomach, duodenum, and proximal jejunum are bypassed, leading to weight loss, improvement in metabolic parameters, and a change in hormonal secretion. We sought to generate and characterize a mouse model for OAGB. Mice fed for 26 wk on a high-fat diet were assigned to OAGB, sham surgery, or caloric restriction and were followed for 50 more days on a high-fat diet. Physiological and histological parameters of the mice were compared during and at the end of the experiment. OAGB-operated mice lost weight and displayed low levels of plasma lipids, high insulin sensitivity, and rapid glucose metabolism compared with sham-operated mice. OAGB-operated mice had higher energy expenditure, higher levels of glucagon-like peptide (GLP-1), and lower albumin than weight-matched calorie-restricted mice. There was no difference in the histology of the endocrine pancreas. The livers of OAGB mice had little hepatic steatosis yet presented with a large number of phagocytic cells. The OAGB mouse model recapitulates many of the phenotypes described in patients that underwent OAGB and enables molecular and physiological studies on the outcome of this surgery.NEW & NOTEWORTHY A mouse model for one anastomosis gastric bypass (OAGB) surgery displays similar outcomes to clinical reports and enables to study the weight loss-dependent and -independent effects of this bariatric surgery.


Assuntos
Cirurgia Bariátrica , Derivação Gástrica , Resistência à Insulina , Obesidade Mórbida , Animais , Cirurgia Bariátrica/métodos , Modelos Animais de Doenças , Derivação Gástrica/métodos , Humanos , Camundongos , Obesidade Mórbida/metabolismo , Estudos Retrospectivos , Redução de Peso/fisiologia
17.
Biomaterials ; 275: 120924, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34147716

RESUMO

One in 190 Americans is currently living with the loss of a limb resulted from injury, amputation, or neurodegenerative disease. Advanced neuroprosthetic devices combine peripheral neural interfaces with sophisticated prosthetics and hold great potential for the rehabilitation of impaired motor and sensory functions. While robotic prosthetics have advanced very rapidly, peripheral neural interfaces have long been limited by the capability of interfacing with the peripheral nervous system. In this work, we developed a hyperflexible regenerative sieve electrode to serve as a peripheral neural interface. We examined tissue neurovascular integration through this novel device. We demonstrated that we could enhance the neurovascular invasion through the device with directional growth factor delivery. Furthermore, we demonstrated that we could reduce the tissue reaction to the device often seen in peripheral neural interfaces. Finally, we show that we can create a stable tissue device interface in a long-term implantation that does not impede the normal regenerative processes of the nerve. Our study developed an optimal platform for the continued development of hyperflexible sieve electrode peripheral neural interfaces.


Assuntos
Membros Artificiais , Doenças Neurodegenerativas , Eletrodos Implantados , Humanos , Regeneração Nervosa , Nervos Periféricos
18.
Biomaterials ; 275: 120947, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34139507

RESUMO

The endothelium plays a central role in regulating vascular homeostasis and is key in determining the response to materials implanted in the vascular system. Endothelial cells are uniquely sensitive to biophysical cues from applied forces and their local cellular microenvironment. The glycocalyx is a layer of proteoglycans, glycoproteins and glycosaminoglycans that lines the luminal surface of the vascular endothelium, interacting directly with the components of the blood and the forces of blood flow. In this work, we examined the changes in mechanical tension of syndecan-1, a cell surface proteoglycan that is an integral part of the glycocalyx, in response to substrate stiffness and fluidic shear stress. Our studies demonstrate that syndecan-1 has higher mechanical tension in regions of cell adhesion, on and in response to nanotopographical cues. In addition, we found that substrate stiffness also regulated the mechanical tension of syndecan-1 and altered its binding to actin, myosin iiB and signaling intermediates including Src, PKA and FAK. Application of fluidic shear stress created a gradient in tension in syndecan-1 and led to enhanced association with actin, Src, myosin IIb and other cytoskeleton related molecules. Overall, our studies support that syndecan-1 is responsive to the mechanical environment of the cells and alters its association with actin and signaling intermediates in response to mechanical stimuli.


Assuntos
Células Endoteliais , Sindecana-1 , Endotélio Vascular , Glicocálix , Mecanotransdução Celular , Estresse Mecânico
19.
Sci Rep ; 11(1): 9838, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972619

RESUMO

Physical activity has been consistently linked to decreased incidence of breast cancer and a substantial increase in the length of survival of patients with breast cancer. However, the understanding of how applied physical forces directly regulate breast cancer remains limited. We investigated the role of mechanical forces in altering the chemoresistance, proliferation and metastasis of breast cancer cells. We found that applied mechanical tension can dramatically alter gene expression in breast cancer cells, leading to decreased proliferation, increased resistance to chemotherapeutic treatment and enhanced adhesion to inflamed endothelial cells and collagen I under fluidic shear stress. A mechanistic analysis of the pathways involved in these effects supported a complex signaling network that included Abl1, Lck, Jak2 and PI3K to regulate pro-survival signaling and enhancement of adhesion under flow. Studies using mouse xenograft models demonstrated reduced proliferation of breast cancer cells with orthotopic implantation and increased metastasis to the skull when the cancer cells were treated with mechanical load. Using high throughput mechanobiological screens we identified pathways that could be targeted to reduce the effects of load on metastasis and found that the effects of mechanical load on bone colonization could be reduced through treatment with a PI3Kγ inhibitor.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/patologia , Mama/patologia , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Estresse Mecânico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Fenômenos Biomecânicos , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/tratamento farmacológico , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Microtomografia por Raio-X , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Nanoscale ; 13(6): 3644-3653, 2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33538275

RESUMO

Recent advances in immunotherapy have highlighted a need for therapeutics that initiate immunogenic cell death in tumors to stimulate the body's immune response to cancer. This study examines whether laser-generated bubbles surrounding nanoparticles ("nanobubbles") induce an immunogenic response for cancer treatment. A single nanosecond laser pulse at 1064 nm generates micron-sized bubbles surrounding gold nanorods in the cytoplasm of breast cancer cells. Cell death occurred in cells treated with nanorods and irradiated, but not in cells with irradiation treatment alone. Cells treated with nanorods and irradiation had increased damage-associated molecular patterns (DAMPs), including increased expression of chaperone proteins human high mobility group box 1 (HMGB1), adenosine triphosphate (ATP), and heat shock protein 70 (HSP70). This enhanced expression of DAMPs led to the activation of dendritic cells. Overall, this treatment approach is a rapid and highly specific method to eradicate tumor cells with simultaneous immunogenic cell death signaling, showing potential as a combination strategy for immunotherapy.


Assuntos
Neoplasias da Mama , Proteína HMGB1 , Neoplasias da Mama/terapia , Calreticulina/metabolismo , Humanos , Morte Celular Imunogênica , Lasers
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA