Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; : e0022824, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158294

RESUMO

Until recently, microbiologists have relied on cultures to understand the microbial world. As a result, model organisms have been the focus of research into understanding Bacteria and Archaea at a molecular level. Diversity surveys and metagenomic sequencing have revealed that these model species are often present in low abundance in the environment; instead, there are microbial taxa that are cosmopolitan in nature. Due to the numerical dominance of these microorganisms and the size of their habitats, these lineages comprise mind-boggling population sizes upward of 1028 cells on the planet. Many of these dominant groups have cultured representatives and have been shown to be involved in mediating key processes in nature. Given their importance and the increasing need to understand changes due to climate change, we propose that members of Nitrosophaerota (Nitrosopumilus maritimus), SAR11 (Pelagibacter ubique), Hadesarchaeia, Bathyarchaeia, and others become models in the future. Abundance should not be the only measure of a good model system; there are other organisms that are well suited to advance our understanding of ecology and evolution. For example, the most well-studied symbiotic bacteria, like Buchnera, Aliivibrio, and Rhizobium, should be models for understanding host-associations. Also, there are organisms that hold new insights into major transitions in the evolution of life on the planet like the Asgard Archaea (Heimdallarchaeia). Innovations in a variety of in situ techniques have enabled us to circumvent culturing when studying everything from genetics to physiology. Our deepest understanding of microbiology and its impact on the planet will come from studying these microbes in nature. Laboratory-based studies must be grounded in nature, not the other way around.

2.
Microbiome ; 12(1): 149, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39123272

RESUMO

BACKGROUND: Gemmatimonadota bacteria are widely distributed in nature, but their metabolic potential and ecological roles in marine environments are poorly understood. RESULTS: Here, we obtained 495 metagenome-assembled genomes (MAGs), and associated viruses, from coastal to deep-sea sediments around the world. We used this expanded genomic catalog to compare the protein composition and update the phylogeny of these bacteria. The marine Gemmatimonadota are phylogenetically different from those previously reported from terrestrial environments. Functional analyses of these genomes revealed these marine genotypes are capable of degradation of complex organic carbon, denitrification, sulfate reduction, and oxidizing sulfide and sulfite. Interestingly, there is widespread genetic potential for secondary metabolite biosynthesis across Gemmatimonadota, which may represent an unexplored source of novel natural products. Furthermore, viruses associated with Gemmatimonadota have the potential to "hijack" and manipulate host metabolism, including the assembly of the lipopolysaccharide in their hosts. CONCLUSIONS: This expanded genomic diversity advances our understanding of these globally distributed bacteria across a variety of ecosystems and reveals genetic distinctions between those in terrestrial and marine communities. Video Abstract.


Assuntos
Metagenoma , Filogenia , Genoma Bacteriano , Sedimentos Geológicos/microbiologia , Genômica , Água do Mar/microbiologia , Organismos Aquáticos/genética , Metabolismo Secundário , Metagenômica
3.
Nat Commun ; 15(1): 6384, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085194

RESUMO

The roles of Asgard archaea in eukaryogenesis and marine biogeochemical cycles are well studied, yet their contributions in soil ecosystems remain unknown. Of particular interest are Asgard archaeal contributions to methane cycling in wetland soils. To investigate this, we reconstructed two complete genomes for soil-associated Atabeyarchaeia, a new Asgard lineage, and a complete genome of Freyarchaeia, and predicted their metabolism in situ. Metatranscriptomics reveals expression of genes for [NiFe]-hydrogenases, pyruvate oxidation and carbon fixation via the Wood-Ljungdahl pathway. Also expressed are genes encoding enzymes for amino acid metabolism, anaerobic aldehyde oxidation, hydrogen peroxide detoxification and carbohydrate breakdown to acetate and formate. Overall, soil-associated Asgard archaea are predicted to include non-methanogenic acetogens, highlighting their potential role in carbon cycling in terrestrial environments.


Assuntos
Archaea , Ciclo do Carbono , Metano , Microbiologia do Solo , Solo , Áreas Alagadas , Metano/metabolismo , Archaea/genética , Archaea/metabolismo , Solo/química , Filogenia , Genoma Arqueal , Oxirredução
4.
Nat Commun ; 15(1): 6386, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085212

RESUMO

Dozens of new antiviral systems have been recently characterized in bacteria. Some of these systems are present in eukaryotes and appear to have originated in prokaryotes, but little is known about these defense mechanisms in archaea. Here, we explore the diversity and distribution of defense systems in archaea and identify 2610 complete systems in Asgardarchaeota, a group of archaea related to eukaryotes. The Asgard defense systems comprise 89 unique systems, including argonaute, NLR, Mokosh, viperin, Lassamu, and CBASS. Asgard viperin and argonaute proteins have structural homology to eukaryotic proteins, and phylogenetic analyses suggest that eukaryotic viperin proteins were derived from Asgard viperins. We show that Asgard viperins display anti-phage activity when heterologously expressed in bacteria. Eukaryotic and bacterial argonaute proteins appear to have originated in Asgardarchaeota, and Asgard argonaute proteins have argonaute-PIWI domains, key components of eukaryotic RNA interference systems. Our results support that Asgardarchaeota played important roles in the origin of antiviral defense systems in eukaryotes.


Assuntos
Archaea , Proteínas Arqueais , Filogenia , Archaea/genética , Archaea/imunologia , Archaea/virologia , Proteínas Arqueais/metabolismo , Proteínas Arqueais/genética , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Eucariotos/genética , Eucariotos/imunologia , Bacteriófagos/genética , Bacteriófagos/fisiologia , Evolução Molecular
5.
Syst Appl Microbiol ; 47(4): 126525, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38909391

RESUMO

Asgardarchaeota, commonly referred to as Asgard archaea, is a candidatus phylum-rank archaeal clade that includes the closest archaeal relatives of eukaryotes. Despite their prevalence in the scientific literature, the name Asgardarchaeota lacks nomenclatural validation. Here, we describe a novel high-quality metagenome-assembled genome (MAG), AB3033_2TS, proposed to serve as the nomenclatural type for the species Asgardarchaeum abyssiTS according to the rules of the SeqCode. Based on protein content and compositional features, we infer that A. abyssi AB3033_2TS is an acetogenic chemoheterotroph, possibly a facultative lithoautotroph, and is adapted to a thermophilic lifestyle. Utilizing genomes from Asgard archaea, TACK, and Euryarchaea, we perform phylogenomic reconstructions using the GTDB archaeal marker genes, the current reference set for taxonomic classification. Calibrating relative evolutionary divergence (RED) values for Asgardarchaeota using established Thermoproteota lineages in the GTDB r207 reference tree, we establish a robust classification and propose Asgardarchaeum as the type genus for the family Asgardarchaeaceae (fam. nov)., the order Asgardarchaeales (ord. nov.), the class Asgardarchaeia (class. nov.), and the phylum Asgardarchaeota (phyl. nov.). This effort aims to preserve taxonomic congruence in the scientific literature.


Assuntos
Archaea , Genoma Arqueal , Filogenia , Archaea/classificação , Archaea/genética , Archaea/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Arqueal/genética , DNA Arqueal/química , Metagenoma
6.
Microb Biotechnol ; 17(6): e14508, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38888492

RESUMO

Alkanes, single carbon methane to long-chain hydrocarbons (e.g. hexadecane and tetradecane), are important carbon sources to anaerobic microbial communities. In anoxic environments, archaea are known to utilize and produce methane via the methyl-coenzyme M reductase enzyme (MCR). Recent explorations of new environments, like deep sea sediments, that have coupled metagenomics and cultivation experiments revealed divergent MCRs, also referred to as alkyl-coenzyme M reductases (ACRs) in archaea, with similar mechanisms as the C1 utilizing canonical MCR mechanism. These ACR enzymes have been shown to activate other alkanes such as ethane, propane and butane for subsequent degradation. The reversibility of canonical MCRs suggests that these non-methane-activating homologues (ACRs) might have similar reversibility, perhaps mediated by undiscovered lineages that produce alkanes under certain conditions. The discovery of these alternative alkane utilization pathways holds significant promise for a breadth of potential biotechnological applications in bioremediation, energy production and climate change mitigation.


Assuntos
Archaea , Hidrocarbonetos , Metano , Anaerobiose , Archaea/metabolismo , Archaea/genética , Archaea/classificação , Metano/metabolismo , Hidrocarbonetos/metabolismo , Oxirredutases/metabolismo , Oxirredutases/genética , Alcanos/metabolismo , Redes e Vias Metabólicas/genética , Biodegradação Ambiental
7.
bioRxiv ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38370794

RESUMO

Ecology and evolution are distinct theories, but the short lifespans and large population sizes of microbes allow evolution to unfold along contemporary ecological time scales. To document this in a natural system, we collected a two-decade, 471-metagenome time series from a single site in a freshwater lake, which we refer to as the TYMEFLIES dataset. This massive sampling and sequencing effort resulted in the reconstruction of 30,389 metagenomic-assembled genomes (MAGs) over 50% complete, which dereplicated into 2,855 distinct genomes (>96% nucleotide sequence identity). We found both ecological and evolutionary processes occurred at seasonal time scales. There were recurring annual patterns at the species level in abundances, nucleotide diversities (π), and single nucleotide variant (SNV) profiles for the majority of all taxa. During annual blooms, we observed both higher and lower nucleotide diversity, indicating that both ecological differentiation and competition drove evolutionary dynamics. Overlayed upon seasonal patterns, we observed long-term change in 20% of the species' SNV profiles including gradual changes, step changes, and disturbances followed by resilience. Most abrupt changes occurred in a single species, suggesting evolutionary drivers are highly specific. Nevertheless, seven members of the abundant Nanopelagicaceae family experienced abrupt change in 2012, an unusually hot and dry year. This shift coincided with increased numbers of genes under selection involved in amino acid and nucleic acid metabolism, suggesting fundamental organic nitrogen compounds drive strain differentiation in the most globally abundant freshwater family. Overall, we observed seasonal and decadal trends in both interspecific ecological and intraspecific evolutionary processes. The convergence of microbial ecology and evolution on the same time scales demonstrates that understanding microbiomes requires a new unified approach that views ecology and evolution as a single continuum.

8.
Microbiome ; 12(1): 15, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38273328

RESUMO

BACKGROUND: Biofilms in sulfide-rich springs present intricate microbial communities that play pivotal roles in biogeochemical cycling. We studied chemoautotrophically based biofilms that host diverse CPR bacteria and grow in sulfide-rich springs to investigate microbial controls on biogeochemical cycling. RESULTS: Sulfide springs biofilms were investigated using bulk geochemical analysis, genome-resolved metagenomics, and scanning transmission X-ray microscopy (STXM) at room temperature and 87 K. Chemolithotrophic sulfur-oxidizing bacteria, including Thiothrix and Beggiatoa, dominate the biofilms, which also contain CPR Gracilibacteria, Absconditabacteria, Saccharibacteria, Peregrinibacteria, Berkelbacteria, Microgenomates, and Parcubacteria. STXM imaging revealed ultra-small cells near the surfaces of filamentous bacteria that may be CPR bacterial episymbionts. STXM and NEXAFS spectroscopy at carbon K and sulfur L2,3 edges show that filamentous bacteria contain protein-encapsulated spherical elemental sulfur granules, indicating that they are sulfur oxidizers, likely Thiothrix. Berkelbacteria and Moranbacteria in the same biofilm sample are predicted to have a novel electron bifurcating group 3b [NiFe]-hydrogenase, putatively a sulfhydrogenase, potentially linked to sulfur metabolism via redox cofactors. This complex could potentially contribute to symbioses, for example, with sulfur-oxidizing bacteria such as Thiothrix that is based on cryptic sulfur cycling. One Doudnabacteria genome encodes adjacent sulfur dioxygenase and rhodanese genes that may convert thiosulfate to sulfite. We find similar conserved genomic architecture associated with CPR bacteria from other sulfur-rich subsurface ecosystems. CONCLUSIONS: Our combined metagenomic, geochemical, spectromicroscopic, and structural bioinformatics analyses of biofilms growing in sulfide-rich springs revealed consortia that contain CPR bacteria and sulfur-oxidizing Proteobacteria, including Thiothrix, and bacteria from a new family within Beggiatoales. We infer roles for CPR bacteria in sulfur and hydrogen cycling. Video Abstract.


Assuntos
Ecossistema , Água Subterrânea , Bactérias/genética , Bactérias/metabolismo , Sulfetos/metabolismo , Oxirredução , Água Subterrânea/microbiologia , Enxofre/metabolismo , Biofilmes , Hidrogênio/metabolismo , Filogenia
10.
11.
mSystems ; 8(5): e0061923, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37702502

RESUMO

IMPORTANCE: Petroleum pollution in the ocean has increased because of rapid population growth and modernization, requiring urgent remediation. Our understanding of the metabolic response of native microbial communities to oil spills is not well understood. Here, we explored the baseline hydrocarbon-degrading communities of a subarctic Atlantic region to uncover the metabolic potential of the bacteria that inhabit the surface and subsurface water. We conducted enrichments with a 13C-labeled hydrocarbon to capture the fraction of the community actively using the hydrocarbon. We then combined this approach with metagenomics to identify the metabolic potential of this hydrocarbon-degrading community. This revealed previously undescribed uncultured bacteria with unique metabolic mechanisms involved in aerobic hydrocarbon degradation, indicating that temperature may be pivotal in structuring hydrocarbon-degrading baseline communities. Our findings highlight gaps in our understanding of the metabolic complexity of hydrocarbon degradation by native marine microbial communities.


Assuntos
Bactérias , Hidrocarbonetos , Biodegradação Ambiental , Hidrocarbonetos/análise , Bactérias/genética , Oceano Atlântico , Alcanos/metabolismo
12.
ISME J ; 17(11): 1828-1838, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37596411

RESUMO

Deep marine sediments (>1mbsf) harbor ~26% of microbial biomass and are the largest reservoir of methane on Earth. Yet, the deep subsurface biosphere and controls on its contribution to methane production remain underexplored. Here, we use a multidisciplinary approach to examine methanogenesis in sediments (down to 295 mbsf) from sites with varying degrees of thermal alteration (none, past, current) at Guaymas Basin (Gulf of California) for the first time. Traditional (13C/12C and D/H) and multiply substituted (13CH3D and 12CH2D2) methane isotope measurements reveal significant proportions of microbial methane at all sites, with the largest signal at the site with past alteration. With depth, relative microbial methane decreases at differing rates between sites. Gibbs energy calculations confirm methanogenesis is exergonic in Guaymas sediments, with methylotrophic pathways consistently yielding more energy than the canonical hydrogenotrophic and acetoclastic pathways. Yet, metagenomic sequencing and cultivation attempts indicate that methanogens are present in low abundance. We find only one methyl-coenzyme M (mcrA) sequence within the entire sequencing dataset. Also, we identify a wide diversity of methyltransferases (mtaB, mttB), but only a few sequences phylogenetically cluster with methylotrophic methanogens. Our results suggest that the microbial methane in the Guaymas subsurface was produced over geologic time by relatively small methanogen populations, which have been variably influenced by thermal sediment alteration. Higher resolution metagenomic sampling may clarify the modern methanogen community. This study highlights the importance of using a multidisciplinary approach to capture microbial influences in dynamic, deep subsurface settings like Guaymas Basin.


Assuntos
Euryarchaeota , Sedimentos Geológicos , Filogenia , Euryarchaeota/genética , Metano/metabolismo , RNA Ribossômico 16S
13.
J Child Lang ; : 1-37, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37493012

RESUMO

Many Aboriginal Australian communities are undergoing language shift from traditional Indigenous languages to contact varieties such as Kriol, an English-lexified Creole. Kriol is reportedly characterised by lexical items with highly variable phonological specifications, and variable implementation of voicing and manner contrasts in obstruents (Sandefur, 1986). A language, such as Kriol, characterised by this unusual degree of variability presents Kriol-acquiring children with a potentially difficult language-learning task, and one which challenges the prevalent theories of acquisition. To examine stop consonant acquisition in this unusual language environment, we present a study of Kriol stop and affricate production, followed by a mispronunciation detection study, with Kriol-speaking children (ages 4-7) from a Northern Territory community where Kriol is the lingua franca. In contrast to previous claims, the results suggest that Kriol-speaking children acquire a stable phonology and lexemes with canonical phonemic specifications, and that English experience would not appear to induce this stability.

14.
Nature ; 618(7967): 992-999, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37316666

RESUMO

In the ongoing debates about eukaryogenesis-the series of evolutionary events leading to the emergence of the eukaryotic cell from prokaryotic ancestors-members of the Asgard archaea play a key part as the closest archaeal relatives of eukaryotes1. However, the nature and phylogenetic identity of the last common ancestor of Asgard archaea and eukaryotes remain unresolved2-4. Here we analyse distinct phylogenetic marker datasets of an expanded genomic sampling of Asgard archaea and evaluate competing evolutionary scenarios using state-of-the-art phylogenomic approaches. We find that eukaryotes are placed, with high confidence, as a well-nested clade within Asgard archaea and as a sister lineage to Hodarchaeales, a newly proposed order within Heimdallarchaeia. Using sophisticated gene tree and species tree reconciliation approaches, we show that analogous to the evolution of eukaryotic genomes, genome evolution in Asgard archaea involved significantly more gene duplication and fewer gene loss events compared with other archaea. Finally, we infer that the last common ancestor of Asgard archaea was probably a thermophilic chemolithotroph and that the lineage from which eukaryotes evolved adapted to mesophilic conditions and acquired the genetic potential to support a heterotrophic lifestyle. Our work provides key insights into the prokaryote-to-eukaryote transition and a platform for better understanding the emergence of cellular complexity in eukaryotic cells.


Assuntos
Archaea , Eucariotos , Filogenia , Archaea/classificação , Archaea/citologia , Archaea/genética , Eucariotos/classificação , Eucariotos/citologia , Eucariotos/genética , Células Eucarióticas/classificação , Células Eucarióticas/citologia , Células Procarióticas/classificação , Células Procarióticas/citologia , Conjuntos de Dados como Assunto , Duplicação Gênica , Evolução Molecular
15.
ISME Commun ; 3(1): 64, 2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37355707

RESUMO

Marine sediments comprise one of the largest environments on the planet, and their microbial inhabitants are significant players in global carbon and nutrient cycles. Recent studies using metagenomic techniques have shown the complexity of these communities and identified novel microorganisms from the ocean floor. Here, we obtained 77 metagenome-assembled genomes (MAGs) from the bacterial phylum Armatimonadota in the Guaymas Basin, Gulf of California, and the Bohai Sea, China. These MAGs comprise two previously undescribed classes within Armatimonadota, which we propose naming Hebobacteria and Zipacnadia. They are globally distributed in hypoxic and anoxic environments and are dominant members of deep-sea sediments (up to 1.95% of metagenomic raw reads). The classes described here also have unique metabolic capabilities, possessing pathways to reduce carbon dioxide to acetate via the Wood-Ljungdahl pathway (WLP) and generating energy through the oxidative branch of glycolysis using carbon dioxide as an electron sink, maintaining the redox balance using the WLP. Hebobacteria may also be autotrophic, not previously identified in Armatimonadota. Furthermore, these Armatimonadota may play a role in sulfur and nitrogen cycling, using the intermediate compounds hydroxylamine and sulfite. Description of these MAGs enhances our understanding of diversity and metabolic potential within anoxic habitats worldwide.

16.
Phonetica ; 80(1-2): 79-115, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-37013664

RESUMO

Nonnative or second language (L2) perception of segmental sequences is often characterised by perceptual modification processes, which may "repair" a nonnative sequence that is phonotactically illegal in the listeners' native language (L1) by transforming the sequence into a sequence that is phonotactically legal in the L1. Often repairs involve the insertion of phonetic materials (epenthesis), but we focus, here, on the less-studied phenomenon of perceptual deletion of nonnative phonemes by testing L1 Mandarin listeners' perception of post-vocalic laterals in L2 English using the triangulating methods of a cross-language goodness rating task, an AXB task, and an AX task. The data were analysed in the framework of the Perceptual Assimilation Model (PAM/PAM-L2), and we further investigated the role of L2 vocabulary size on task performance. The experiments indicate that perceptual deletion occurs when the post-vocalic lateral overlaps with the nucleus vowel in terms of tongue backness specification. In addition, Mandarin listeners' discrimination performance in some contexts was significantly correlated with their English vocabulary size, indicating that continuous growth of vocabulary knowledge can drive perceptual learning of novel L2 segmental sequences and phonotactic structures.


Assuntos
Multilinguismo , Percepção da Fala , Humanos , Gestos , Idioma , Fonética , Vocabulário
17.
Artigo em Inglês | MEDLINE | ID: mdl-36642322

RESUMO

The functional role of membrane-bound carbonic anhydrases (CAs) has been of keen interest in the past decade, and in particular, studies have linked CA in red muscle, heart, and eye to enhanced tissue oxygen extraction in bony fishes (teleosts). However, the number of purported membrane-bound CA isoforms in teleosts, combined with the imperfect system of CA isoform nomenclature, present roadblocks for ascribing physiological functions to particular CA isoforms across different teleost lineages. Here we developed an organizational framework for membrane-bound CAs in teleosts, providing the latest phylogenetic analysis of extant CA4 and CA4-like isoforms. Our data confirm that there are three distinct isoforms of CA4 (a, b, and c) that are conserved across major teleost lineages, with the exception of CA4c gene being lost in salmonids. Tissue distribution analyses suggest CA4a functions in oxygen delivery across teleost lineages, while CA4b may be specialized for renal acid-base balance and ion regulation. This work provides an important foundation for researchers to elucidate the functional significance of CA4 isoforms in fishes.


Assuntos
Anidrase Carbônica IV , Anidrases Carbônicas , Animais , Anidrase Carbônica IV/genética , Filogenia , Anidrases Carbônicas/genética , Isoformas de Proteínas/genética , Peixes/genética , Oxigênio
18.
FEMS Microbiol Ecol ; 99(2)2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36520069

RESUMO

The northern Gulf of Mexico (nGOM) hypoxic zone is a shallow water environment where methane, a potent greenhouse gas, fluxes from sediments to bottom water and remains trapped due to summertime stratification. When the water column is destratified, an active planktonic methanotrophic community could mitigate the efflux of methane, which accumulates to high concentrations, to the atmosphere. To investigate the possibility of such a biofilter in the nGOM hypoxic zone we performed metagenome assembly, and metagenomic and metatranscriptomic read mapping. Methane monooxygenase (pmoA) was an abundant transcript, yet few canonical methanotrophs have been reported in this environment, suggesting a role for non-canonical methanotrophs. To determine the identity of these methanotrophs, we reconstructed six novel metagenome-assembled genomes (MAGs) in the Planctomycetota, Verrucomicrobiota and one putative Latescibacterota, each with at least one pmoA gene copy. Based on ribosomal protein phylogeny, closely related microbes (mostly from Tara Oceans) and isolate genomes were selected and co-analyzed with the nGOM MAGs. Gene annotation and read mapping suggested that there is a large, diverse and unrecognized community of active aerobic methanotrophs in the nGOM hypoxic zone and in the global ocean that could mitigate methane flux to the atmosphere.


Assuntos
Plâncton , Água , Golfo do México , Plâncton/genética , Metagenoma , Metano/metabolismo , Filogenia , Metagenômica , RNA Ribossômico 16S/genética
19.
Nat Commun ; 13(1): 7516, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36473838

RESUMO

Microbes in marine sediments play crucial roles in global carbon and nutrient cycling. However, our understanding of microbial diversity and physiology on the ocean floor is limited. Here, we use phylogenomic analyses of thousands of metagenome-assembled genomes (MAGs) from coastal and deep-sea sediments to identify 55 MAGs that are phylogenetically distinct from previously described bacterial phyla. We propose that these MAGs belong to 4 novel bacterial phyla (Blakebacterota, Orphanbacterota, Arandabacterota, and Joyebacterota) and a previously proposed phylum (AABM5-125-24), all of them within the FCB superphylum. Comparison of their rRNA genes with public databases reveals that these phyla are globally distributed in different habitats, including marine, freshwater, and terrestrial environments. Genomic analyses suggest these organisms are capable of mediating key steps in sedimentary biogeochemistry, including anaerobic degradation of polysaccharides and proteins, and respiration of sulfur and nitrogen. Interestingly, these genomes code for an unusually high proportion (~9% on average, up to 20% per genome) of protein families lacking representatives in public databases. Genes encoding hundreds of these protein families colocalize with genes predicted to be involved in sulfur reduction, nitrogen cycling, energy conservation, and degradation of organic compounds. Our findings advance our understanding of bacterial diversity, the ecological roles of these bacteria, and potential links between novel gene families and metabolic processes in the oceans.


Assuntos
Genômica , Procedimentos de Cirurgia Plástica , Bactérias/genética , Enxofre , Nitrogênio
20.
mSystems ; 7(4): e0033522, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35862818

RESUMO

The compositional and physiological responses of autotrophic microbiotas to salinity in lakes remain unclear. In this study, the community composition and carbon fixation pathways of autotrophic microorganisms in lacustrine sediments with a salinity gradient (82.6 g/L to 0.54 g/L) were investigated by using metagenomic analysis. A total of 117 metagenome-assembled genomes (MAGs) with carbon fixation potentially belonging to 20 phyla were obtained. The abundance of these potential autotrophs increased significantly with decreasing salinity, and the variation of sediment autotrophic microbial communities was mainly affected by salinity, pH, and total organic carbon. Notably, along the decreasing salinity gradient, the dominant lineage shifted from Desulfobacterota to Proteobacteria. Meanwhile, the dominant carbon fixation pathway shifted from the Wood-Lungdahl pathway to the less-energy-efficient Calvin-Benson-Bassham cycle, with glycolysis shifting from the Embden-Meyerhof-Parnas pathway to the less-exergonic Entner-Doudoroff pathway. These results suggest that the physiological efficiency of autotrophic microorganisms decreased when the environmental salinity became lower. Metabolic inference of these MAGs revealed that carbon fixation may be coupled to the oxidation of reduced sulfur compounds and ferrous iron, dissimilatory nitrate reduction at low salinity, and dissimilatory sulfate reduction in hypersaline sediments. These results extend our understanding of metabolic versatility and niche diversity of autotrophic microorganisms in saline environments and shed light on the response of autotrophic microbiomes to salinity. These findings are of great significance for understanding the impact of desalination caused by climate warming on the carbon cycle of saline lake ecosystems. IMPORTANCE The Qinghai-Tibetan lakes are experiencing water increase and salinity decrease due to climate warming. However, little is known about how the salinity decrease will affect the composition of autotrophic microbial populations and their carbon fixation pathways. In this study, we used genome-resolved metagenomics to interpret the dynamic changes in the autotrophic microbial community and metabolic pathways along a salinity gradient. The results showed that desalination drove the shift of the dominant microbial lineage from Desulfobacterota to Proteobacteria, enriched autotrophs with lower physiological efficiency pathways, and enhanced coupling between the carbon cycle and other element cycles. These results can predict the future response of microbial communities to lake desalination and improve our understanding of the effect of climate warming on the carbon cycle in saline aquatic ecosystems.


Assuntos
Bactérias , Microbiota , Bactérias/genética , Salinidade , Microbiota/genética , Processos Autotróficos , Proteobactérias , Ciclo do Carbono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA