Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Insect Physiol ; 155: 104635, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38609007

RESUMO

Honey bees are globally important pollinators, key to many aspects of ecosystem function and agricultural production. However they are facing an increasing array of stress factors. These stressors include exposure to pathogens and pesticides, agricultural intensification, and changes in climate, and likely contribute to colony dysfunction and colony losses. Here we use temperature-controlled glasshouse experiments to investigate the impact of a field-realistic temperature-range on honey bee colonies, including temperatures based on projections for near-future local conditions. We show that increased temperatures have a significant impact on honey bee worker activity, with increased worker movement in and out of colonies, particularly over 30 °C. In addition, increased glasshouse temperatures led to significantly higher brood (egg, larval and pupal cells) humidity. Finally, temperature had a more severe impact at the later end of the experiment than at the start (on worker movement and brood conditions), suggesting that colonies under stress (either due to exposure to thermal stress or glasshouse confinement) have more difficulty in manging thermoregulation. These results indicate the potential impact of higher temperatures on the healthy functioning of these important pollinators.


Assuntos
Temperatura , Abelhas/fisiologia , Animais , Temperatura Alta , Umidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA