Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mar Drugs ; 13(12): 7087-112, 2015 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-26703628

RESUMO

Cyclic imines (CIs) are a group of phytoplankton produced toxins related to shellfish food products, some of which are already present in UK and European waters. Their risk to shellfish consumers is poorly understood, as while no human intoxication has been definitively related to this group, their fast acting toxicity following intraperitoneal injection in mice has led to concern over their human health implications. A request was therefore made by UK food safety authorities to examine these toxins more closely to aid possible management strategies. Of the CI producers only the spirolide producer Alexandrium ostenfeldii is known to exist in UK waters at present but trends in climate change may lead to increased risk from other organisms/CI toxins currently present elsewhere in Europe and in similar environments worldwide. This paper reviews evidence concerning the prevalence of CIs and CI-producing phytoplankton, together with testing methodologies. Chemical, biological and biomolecular methods are reviewed, including recommendations for further work to enable effective testing. Although the focus here is on the UK, from a strategic standpoint many of the topics discussed will also be of interest in other parts of the world since new and emerging marine biotoxins are of global concern.


Assuntos
Iminas/toxicidade , Toxinas Marinhas/toxicidade , Fitoplâncton/metabolismo , Animais , Mudança Climática , Humanos , Iminas/administração & dosagem , Iminas/isolamento & purificação , Toxinas Marinhas/administração & dosagem , Toxinas Marinhas/isolamento & purificação , Camundongos , Frutos do Mar/análise , Intoxicação por Frutos do Mar/prevenção & controle , Reino Unido
2.
J AOAC Int ; 97(2): 492-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24830161

RESUMO

AOAC Official Method 2005.06 precolumn oxidation LC-fluorescence detection method has been used for many years for the detection and quantitation of paralytic shellfish poisoning (PSP) toxins in bivalve molluscs. After extensive single- and multiple-laboratory validation, the method has been slowly gaining acceptance worldwide as a useful and practical tool for official control testing. In Great Britain, the method has become routine since 2008, with no requirement since then for reverting back to the bioassay reference method. Although the method has been refined to be semiautomated, faster, and more reproducible, the quantitation step can be complex and time-consuming. An alternative approach was developed to utilize the qualitative screening results for generating a semiquantitative results assessment. Data obtained over 5 years enabled the comparison of semiquantitative and fully quantitative PSP results in over 15 000 shellfish samples comprising eight different species showed that the semiquantitative approach resulted in over-estimated paralytic shellfish toxin levels by an average factor close to two in comparison with the fully quantified levels. No temporal trends were observed in the data or relating to species type, with the exception of surf clams. The comparison suggested a semiquantitative threshold of 800 microg saxitoxin (STX) eq/kg should provide a safe limit for the determination of samples to be forwarded to full quantitation. However, the decision was taken to halve this limit to include an additional safety factor of 2, resulting in the use of a semiquantitative threshold of 400 microg STX eq/kg. Implementation of the semiquantitative method into routine testing would result in a significant reduction in the numbers of samples requiring quantitation and have a positive impact on the overall turnaround of reported PSP results. The refined method would be appropriate for any monitoring laboratory faced with high throughput requirements.


Assuntos
Bivalves/química , Cromatografia Líquida/métodos , Fluorescência , Toxinas Marinhas/química , Animais , Contaminação de Alimentos/análise , Limite de Detecção , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Frutos do Mar , Intoxicação por Frutos do Mar/prevenção & controle , Fatores de Tempo , Reino Unido
3.
Harmful Algae ; 31: 87-99, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28040115

RESUMO

As the official control monitoring laboratory in Great Britain for the analysis of marine biotoxins in shellfish, Cefas have for the past five years conducted routine monitoring for paralytic shellfish poisoning toxins (PST) using a non-animal alternative method to the mouse bioassay reference method; a refined version of the AOAC 2005.06 pre-column oxidation liquid chromatography method. Application of this instrumental methodology has enabled the generation of data not only on the occurrence and magnitude of PST events, but also the quantitation and assessment of different PST profiles. Since implementation of the method in 2008, results have shown huge variabilities in the occurrence of PSTs, with large spatial and temporal variabilities around the coastline. Mean PST profiles were not found to correlate either with total PST content of the shellfish, the year of sampling or with a few notable exceptions, the shellfish species. Toxin profiles were found to fall into one of four distinct profile types, with one relating solely to the exclusive presence of decarbamoyl toxins in surf clams. The other profile types contained variable proportions of gonyautoxins, N-sulfocarbamoyl toxins, neosaxitoxin and saxitoxin. While some indications of geographical repeatability were noted, this was not observed for all profile types. Consequently, the application of rapid immunochemical testing methods to end product testing would need to be considered carefully given the large differences in PST congener cross-reactivities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA