Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 5(1): 272, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35347220

RESUMO

Burkholderia pseudomallei lethal factor 1 (BLF1) exhibits site-specific glutamine deamidase activity against the eukaryotic RNA helicase, eIF4A, thereby blocking mammalian protein synthesis. The structure of a complex between BLF1 C94S and human eIF4A shows that the toxin binds in the cleft between the two RecA-like eIF4A domains forming interactions with residues from both and with the scissile amide of the target glutamine, Gln339, adjacent to the toxin active site. The RecA-like domains adopt a radically twisted orientation compared to other eIF4A structures and the nature and position of conserved residues suggests this may represent a conformation associated with RNA binding. Comparison of the catalytic site of BLF1 with other deamidases and cysteine proteases reveals that they fall into two classes, related by pseudosymmetry, that present either the re or si faces of the target amide/peptide to the nucleophilic sulfur, highlighting constraints in the convergent evolution of their Cys-His active sites.


Assuntos
Burkholderia , Fator de Iniciação 4A em Eucariotos , Amidas , Animais , Burkholderia/genética , Burkholderia/metabolismo , Fator de Iniciação 4A em Eucariotos/metabolismo , Glutamina/metabolismo , Humanos , Mamíferos , Biossíntese de Proteínas
2.
Glob Chang Biol ; 28(1): 245-266, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34653296

RESUMO

Tree rings provide an invaluable long-term record for understanding how climate and other drivers shape tree growth and forest productivity. However, conventional tree-ring analysis methods were not designed to simultaneously test effects of climate, tree size, and other drivers on individual growth. This has limited the potential to test ecologically relevant hypotheses on tree growth sensitivity to environmental drivers and their interactions with tree size. Here, we develop and apply a new method to simultaneously model nonlinear effects of primary climate drivers, reconstructed tree diameter at breast height (DBH), and calendar year in generalized least squares models that account for the temporal autocorrelation inherent to each individual tree's growth. We analyze data from 3811 trees representing 40 species at 10 globally distributed sites, showing that precipitation, temperature, DBH, and calendar year have additively, and often interactively, influenced annual growth over the past 120 years. Growth responses were predominantly positive to precipitation (usually over ≥3-month seasonal windows) and negative to temperature (usually maximum temperature, over ≤3-month seasonal windows), with concave-down responses in 63% of relationships. Climate sensitivity commonly varied with DBH (45% of cases tested), with larger trees usually more sensitive. Trends in ring width at small DBH were linked to the light environment under which trees established, but basal area or biomass increments consistently reached maxima at intermediate DBH. Accounting for climate and DBH, growth rate declined over time for 92% of species in secondary or disturbed stands, whereas growth trends were mixed in older forests. These trends were largely attributable to stand dynamics as cohorts and stands age, which remain challenging to disentangle from global change drivers. By providing a parsimonious approach for characterizing multiple interacting drivers of tree growth, our method reveals a more complete picture of the factors influencing growth than has previously been possible.


Assuntos
Mudança Climática , Florestas , Biomassa , Clima , Temperatura
3.
Sci Rep ; 11(1): 18337, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526586

RESUMO

Compound climate extremes (CCEs) can have significant and persistent environmental impacts on ecosystems. However, knowledge of the occurrence of CCEs beyond the past ~ 50 years, and hence their ecological impacts, is limited. Here, we place the widespread 2015-16 mangrove dieback and the more recent 2020 inland native forest dieback events in northern Australia into a longer historical context using locally relevant palaeoclimate records. Over recent centuries, multiple occurrences of analogous antecedent and coincident climate conditions associated with the mangrove dieback event were identified in this compilation. However, rising sea level-a key antecedent condition-over the three decades prior to the mangrove dieback is unprecedented in the past 220 years. Similarly, dieback in inland forests and savannas was associated with a multi-decadal wetting trend followed by the longest and most intense drought conditions of the past 250 years, coupled with rising temperatures. While many ecological communities may have experienced CCEs in past centuries, the addition of new environmental stressors associated with varying aspects of global change may exceed their thresholds of resilience. Palaeoclimate compilations provide the much-needed longer term context to better assess frequency and changes in some types of CCEs and their environmental impacts.

4.
Ecol Appl ; 31(6): e02383, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34042236

RESUMO

Infrequent, high-intensity disturbances can have profound impacts on forested landscapes, changing forest structure and altering relative species abundance. However, due to their rarity and the logistical challenges of directly observing such extreme events, both the spatial variability of disturbance intensity and the species-specific responses to this variability are poorly understood. We used observed patterns of mortality across a fire severity gradient following the 2009 Black Saturday fires in southeastern Australia to simultaneously estimate (1) species- and size-specific susceptibility to fire-induced mortality and (2) fire intensity. We found broad variation in patterns of fire susceptibility among the 10 tree species (five eucalypts and five non-eucalypts) sufficiently abundant for analysis. Among the eucalypts, Eucalyptus obliqua was the most resistant to fire-induced mortality, with trees of ~25 cm DBH having a 50% probability of surviving even the most intense fires. In contrast, E. regnans had 100% mortality across all size classes when subjected to high-intensity fire. Basal resprouting occurred in six of the study species and, when accounted for, fundamentally changed the mortality profile of these species, highlighting the importance of resprouting as an adaptation to fire in these landscapes. In particular, the two iconic cool temperate rainforest species (Nothofagus cunninghami and Atherosperma moschatum) were strong resprouters (~45% of individuals were able to resprout after being top-killed by fire). We also found evidence for compositional shifts in regeneration above threshold values of fire intensity in cool temperate rainforest and mixed forest sites, both of which have important conservation values within these landscapes. The observed patterns of species- and size-specific susceptibility to fire-induced mortality may be used to anticipate changes in forest structure and composition in the future. In addition, they may also help guide forest management strategies that reduce the length of time individual trees are exposed to potentially lethal fires, thereby increasing the resilience of these forests to future fires.


Assuntos
Eucalyptus , Incêndios , Austrália , Florestas , Especificidade da Espécie , Árvores
5.
Sci Rep ; 11(1): 6447, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33742033

RESUMO

Tripartite members of the ClyA family of α-PFTs have recently been identified in a number of pathogenic Gram-negative bacteria, including the human pathogen Serratia marcescens. Structures of a Gram-negative A component and a tripartite α-PFT complete pore are unknown and a mechanism for pore formation is still uncertain. Here we characterise the tripartite SmhABC toxin from S. marcescens and propose a mechanism of pore assembly. We present the structure of soluble SmhA, as well as the soluble and pore forms of SmhB. We show that the ß-tongue soluble structure is well conserved in the family and propose two conserved latches between the head and tail domains that are broken on the soluble to pore conformational change. Using the structures of individual components, sequence analysis and docking predictions we illustrate how the A, B and C protomers would assemble on the membrane to produce a complete tripartite α-PFT pore.

6.
Commun Biol ; 4(1): 376, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33742128

RESUMO

In infections by apicomplexan parasites including Plasmodium, Toxoplasma gondii, and Eimeria, host interactions are mediated by proteins including families of membrane-anchored cysteine-rich surface antigens (SAGs) and SAG-related sequences (SRS). Eimeria tenella causes caecal coccidiosis in chickens and has a SAG family with over 80 members making up 1% of the proteome. We have solved the structure of a representative E. tenella SAG, EtSAG19, revealing that, despite a low level of sequence similarity, the entire Eimeria SAG family is unified by its three-layer αßα fold which is related to that of the CAP superfamily. Furthermore, sequence comparisons show that the Eimeria SAG fold is conserved in surface antigens of the human coccidial parasite Cyclospora cayetanensis but this fold is unrelated to that of the SAGs/SRS proteins expressed in other apicomplexans including Plasmodium species and the cyst-forming coccidia Toxoplasma gondii, Neospora caninum and Besnoitia besnoiti. However, despite having very different structures, Consurf analysis showed that Eimeria SAG and Toxoplasma SRS families each exhibit marked hotspots of sequence hypervariability that map to their surfaces distal to the membrane anchor. This suggests that the primary and convergent purpose of the different structures is to provide a platform onto which sequence variability can be imposed.


Assuntos
Antígenos de Protozoários/metabolismo , Eimeria tenella/metabolismo , Proteínas de Protozoários/metabolismo , Antígenos de Protozoários/química , Antígenos de Protozoários/genética , Cristalografia por Raios X , Eimeria tenella/genética , Evolução Molecular , Variação Genética , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Dobramento de Proteína , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Relação Estrutura-Atividade
7.
Ecol Evol ; 11(24): 18401-18421, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35003680

RESUMO

Herbivore foraging decisions are closely related to plant nutritional quality. For arboreal folivores with specialized diets, such as the vulnerable greater glider (Petauroides volans), the abundance of suitable forage trees can influence habitat suitability and species occurrence. The ability to model and map foliar nitrogen would therefore enhance our understanding of folivore habitat use at finer scales. We tested whether high-resolution multispectral imagery, collected by a lightweight and low-cost commercial unoccupied aerial vehicle (UAV), could be used to predict total and digestible foliar nitrogen (N and digN) at the tree canopy level and forest stand-scale from leaf-scale chemistry measurements across a gradient of mixed-species Eucalyptus forests in southeastern Australia. We surveyed temperate Eucalyptus forests across an elevational and topographic gradient from sea level to high elevation (50-1200 m a.s.l.) for forest structure, leaf chemistry, and greater glider occurrence. Using measures of multispectral leaf reflectance and spectral indices, we estimated N and digN and mapped N and favorable feeding habitat using machine learning algorithms. Our surveys covered 17 Eucalyptus species ranging in foliar N from 0.63% to 1.92% dry matter (DM) and digN from 0.45% to 1.73% DM. Both multispectral leaf reflectance and spectral indices were strong predictors for N and digN in model cross-validation. At the tree level, 79% of variability between observed and predicted measures of nitrogen was explained. A spatial supervised classification model correctly identified 80% of canopy pixels associated with high N concentrations (≥1% DM). We developed a successful method for estimating foliar nitrogen of a range of temperate Eucalyptus species using UAV multispectral imagery at the tree canopy level and stand scale. The ability to spatially quantify feeding habitat using UAV imagery allows remote assessments of greater glider habitat at a scale relevant to support ground surveys, management, and conservation for the vulnerable greater glider across southeastern Australia.

8.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 12): 577-582, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33263568

RESUMO

Tripartite α-pore-forming toxins are constructed of three proteins (A, B and C) and are found in many bacterial pathogens. While structures of the B and C components from Gram-negative bacteria have been described, the structure of the A component of a Gram-negative α-pore-forming toxin has so far proved elusive. SmhA, the A component from the opportunistic human pathogen Serratia marcescens, has been cloned, overexpressed and purified. Crystals were grown of selenomethionine-derivatized protein and anomalous data were collected. Phases were calculated and an initial electron-density map was produced.


Assuntos
Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Serratia marcescens/genética , Toxinas Bacterianas/genética , Toxinas Bacterianas/isolamento & purificação , Clonagem Molecular , Cristalografia por Raios X
9.
J Biol Chem ; 294(48): 18077-18091, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31624143

RESUMO

Alginate is a polymer containing two uronic acid epimers, ß-d-mannuronate (M) and α-l-guluronate (G), and is a major component of brown seaweed that is depolymerized by alginate lyases. These enzymes have diverse specificity, cleaving the chain with endo- or exotype activity and with differential selectivity for the sequence of M or G at the cleavage site. Dp0100 is a 201-kDa multimodular, broad-specificity endotype alginate lyase from the marine thermophile Defluviitalea phaphyphila, which uses brown algae as a carbon source, converting it to ethanol, and bioinformatics analysis suggested that its catalytic domain represents a new polysaccharide lyase family, PL39. The structure of the Dp0100 catalytic domain, determined at 2.07 Å resolution, revealed that it comprises three regions strongly resembling those of the exotype lyase families PL15 and PL17. The conservation of key catalytic histidine and tyrosine residues belonging to the latter suggests these enzymes share mechanistic similarities. A complex of Dp0100 with a pentasaccharide, M5, showed that the oligosaccharide is located in subsites -2, -1, +1, +2, and +3 in a long, deep canyon open at both ends, explaining the endotype activity of this lyase. This contrasted with the hindered binding sites of the exotype enzymes, which are blocked such that only one sugar moiety can be accommodated at the -1 position in the catalytic site. The biochemical and structural analyses of Dp0100, the first for this new class of endotype alginate lyases, have furthered our understanding of the structure-function and evolutionary relationships within this important class of enzymes.


Assuntos
Proteínas de Bactérias/química , Clostridiales/enzimologia , Polissacarídeo-Liases/química , Proteínas de Bactérias/genética , Clostridiales/genética , Cristalografia por Raios X , Polissacarídeo-Liases/genética , Domínios Proteicos
10.
Nat Commun ; 10(1): 2900, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31263098

RESUMO

The alpha helical CytolysinA family of pore forming toxins (α-PFT) contains single, two, and three component members. Structures of the single component Eschericia coli ClyA and the two component Yersinia enterolytica YaxAB show both undergo conformational changes from soluble to pore forms, and oligomerization to produce the active pore. Here we identify tripartite α-PFTs in pathogenic Gram negative bacteria, including Aeromonas hydrophila (AhlABC). We show that the AhlABC toxin requires all three components for maximal cell lysis. We present structures of pore components which describe a bi-fold hinge mechanism for soluble to pore transition in AhlB and a contrasting tetrameric assembly employed by soluble AhlC to hide their hydrophobic membrane associated residues. We propose a model of pore assembly where the AhlC tetramer dissociates, binds a single membrane leaflet, recruits AhlB promoting soluble to pore transition, prior to AhlA binding to form the active hydrophilic lined pore.


Assuntos
Aeromonas hydrophila/metabolismo , Toxinas Bacterianas/química , Proteínas Hemolisinas/química , Proteínas Citotóxicas Formadoras de Poros/química , Aeromonas hydrophila/química , Aeromonas hydrophila/genética , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Cristalografia por Raios X , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo
11.
Biomolecules ; 9(6)2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31159273

RESUMO

The cupin-type phosphoglucose isomerase (PfPGI) from the hyperthermophilic archaeon Pyrococcus furiosus catalyzes the reversible isomerization of glucose-6-phosphate to fructose-6-phosphate. We investigated PfPGI using protein-engineering bioinformatics tools to select functionally-important residues based on correlated mutation analyses. A pair of amino acids in the periphery of PfPGI was found to be the dominant co-evolving mutation. The position of these selected residues was found to be non-obvious to conventional protein engineering methods. We designed a small smart library of variants by substituting the co-evolved pair and screened their biochemical activity, which revealed their functional relevance. Four mutants were further selected from the library for purification, measurement of their specific activity, crystal structure determination, and metal cofactor coordination analysis. Though the mutant structures and metal cofactor coordination were strikingly similar, variations in their activity correlated with their fine-tuned dynamics and solvent access regulation. Alternative, small smart libraries for enzyme optimization are suggested by our approach, which is able to identify non-obvious yet beneficial mutations.


Assuntos
Glucose-6-Fosfato Isomerase/genética , Glucose-6-Fosfato Isomerase/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação , Pyrococcus furiosus/enzimologia , Temperatura , Inibidores Enzimáticos/farmacologia , Glucose-6-Fosfato Isomerase/antagonistas & inibidores , Glucose-6-Fosfato Isomerase/química , Manganês/metabolismo , Simulação de Dinâmica Molecular , Proteínas Mutantes/antagonistas & inibidores , Proteínas Mutantes/química , Conformação Proteica , Engenharia de Proteínas , Água/metabolismo
12.
Nat Commun ; 9(1): 4765, 2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-30420757

RESUMO

The type VI secretion system (T6SS) is a multi-protein complex that injects bacterial effector proteins into target cells. It is composed of a cell membrane complex anchored to a contractile bacteriophage tail-like apparatus consisting of a sharpened tube that is ejected by the contraction of a sheath against a baseplate. We present structural and biochemical studies on TssA subunits from two different T6SSs that reveal radically different quaternary structures in comparison to the dodecameric E. coli TssA that arise from differences in their C-terminal sequences. Despite this, the different TssAs retain equivalent interactions with other components of the complex and position their highly conserved N-terminal ImpA_N domain at the same radius from the centre of the sheath as a result of their distinct domain architectures, which includes additional spacer domains and highly mobile interdomain linkers. Together, these variations allow these distinct TssAs to perform a similar function in the complex.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/ultraestrutura , Biologia Computacional , Filogenia , Domínios Proteicos , Proteólise , Relação Estrutura-Atividade
13.
Acta Crystallogr F Struct Biol Commun ; 74(Pt 9): 536-542, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30198885

RESUMO

TssA is a core component of the type VI secretion system, and phylogenetic analysis of TssA subunits from different species has suggested that these proteins fall into three distinct clades. Whilst representatives of two clades, TssA1 and TssA2, have been the subjects of investigation, no members of the third clade (TssA3) have been studied. Constructs of TssA from Burkholderia cenocepacia, a representative of clade 3, were expressed, purified and subjected to crystallization trials. Data were collected from crystals of constructs of the N-terminal and C-terminal domains. Analysis of the data from the crystals of these constructs and preliminary structure determination indicates that the C-terminal domain forms an assembly of 32 subunits in D16 symmetry, whereas the N-terminal domain is not involved in subunit assocation.


Assuntos
Proteínas de Bactérias/química , Burkholderia cenocepacia/química , Elétrons , Proteínas de Membrana/química , Subunidades Proteicas/química , Sistemas de Secreção Tipo VI/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Burkholderia cenocepacia/classificação , Clonagem Molecular , Cristalização , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Filogenia , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
14.
Acta Crystallogr F Struct Biol Commun ; 74(Pt 9): 578-582, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30198891

RESUMO

TssA is a core subunit of the type VI secretion system, which is a major player in interspecies competition in Gram-negative bacteria. Previous studies on enteroaggregative Escherichia coli TssA suggested that it is comprised of three putative domains: a conserved N-terminal domain, a middle domain and a ring-forming C-terminal domain. X-ray studies of the latter two domains have identified their respective structures. Here, the results of the expression and purification of full-length and domain constructs of TssA from Aeromonas hydrophila are reported, resulting in diffraction-quality crystals for the middle domain (Nt2) and a construct including the middle and C-terminal domains (Nt2-CTD).


Assuntos
Aeromonas hydrophila/química , Proteínas de Bactérias/química , Proteínas de Membrana/química , Sistemas de Secreção Tipo VI/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Cristalização , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
15.
PLoS One ; 13(7): e0198827, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29969448

RESUMO

Acanthamoeba is normally free-living, but sometimes facultative and occasionally opportunistic parasites. Current therapies are, by necessity, arduous and yet poorly effective due to their inabilities to kill cyst stages or in some cases to actually induce encystation. Acanthamoeba can therefore survive as cysts and cause disease recurrence. Herein, in pursuit of better therapies and to understand the biochemistry of this understudied organism, we characterize its histidine biosynthesis pathway and explore the potential of targeting this with antimicrobials. We demonstrate that Acanthamoeba is a histidine autotroph, but with the ability to scavenge preformed histidine. It is able to grow in defined media lacking this amino acid, but is inhibited by 3-amino-1,2,4-triazole (3AT) that targets Imidazoleglycerol-Phosphate Dehydratase (IGPD) the rate limiting step of histidine biosynthesis. The structure of Acanthamoeba IGPD has also been determined in complex with 2-hydroxy-3-(1,2,4-triazol-1-yl) propylphosphonate [(R)-C348], a recently described novel inhibitor of Arabidopsis thaliana IGPD. This compound inhibited the growth of four Acanthamoeba species, having a 50% inhibitory concentration (IC50) ranging from 250-526 nM. This effect could be ablated by the addition of 1 mM exogenous free histidine, but importantly not by physiological concentrations found in mammalian tissues. The ability of 3AT and (R)-C348 to restrict the growth of four strains of Acanthamoeba spp. including a recently isolated clinical strain, while not inducing encystment, demonstrates the potential therapeutic utility of targeting the histidine biosynthesis pathway in Acanthamoeba.


Assuntos
Acanthamoeba/enzimologia , Amitrol (Herbicida)/química , Antiprotozoários/química , Histidina/antagonistas & inibidores , Hidroliases/química , Acanthamoeba/efeitos dos fármacos , Acanthamoeba/genética , Acanthamoeba/crescimento & desenvolvimento , Amitrol (Herbicida)/farmacologia , Antiprotozoários/farmacologia , Processos Autotróficos/efeitos dos fármacos , Processos Autotróficos/genética , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Histidina/biossíntese , Hidroliases/antagonistas & inibidores , Hidroliases/genética , Hidroliases/metabolismo , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica
16.
Proc Natl Acad Sci U S A ; 115(8): 1795-1800, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29434040

RESUMO

Histidine biosynthesis is an essential process in plants and microorganisms, making it an attractive target for the development of herbicides and antibacterial agents. Imidazoleglycerol-phosphate dehydratase (IGPD), a key enzyme within this pathway, has been biochemically characterized in both Saccharomyces cerevisiae (Sc_IGPD) and Arabidopsis thaliana (At_IGPD). The plant enzyme, having been the focus of in-depth structural analysis as part of an inhibitor development program, has revealed details about the reaction mechanism of IGPD, whereas the yeast enzyme has proven intractable to crystallography studies. The structure-activity relationship of potent triazole-phosphonate inhibitors of IGPD has been determined in both homologs, revealing that the lead inhibitor (C348) is an order of magnitude more potent against Sc_IGPD than At_IGPD; however, the molecular basis of this difference has not been established. Here we have used single-particle electron microscopy (EM) to study structural differences between the At and Sc_IGPD homologs, which could influence the difference in inhibitor potency. The resulting EM maps at ∼3 Šare sufficient to de novo build the protein structure and identify the inhibitor binding site, which has been validated against the crystal structure of the At_IGPD/C348 complex. The structure of Sc_IGPD reveals that a 24-amino acid insertion forms an extended loop region on the enzyme surface that lies adjacent to the active site, forming interactions with the substrate/inhibitor binding loop that may influence inhibitor potency. Overall, this study provides insights into the IGPD family and demonstrates the power of using an EM approach to study inhibitor binding.


Assuntos
Proteínas de Arabidopsis/antagonistas & inibidores , Arabidopsis/enzimologia , Inibidores Enzimáticos/química , Hidroliases/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Saccharomyces cerevisiae/enzimologia , Arabidopsis/química , Arabidopsis/efeitos dos fármacos , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/ultraestrutura , Sítios de Ligação , Microscopia Crioeletrônica , Cristalografia por Raios X , Herbicidas/química , Hidroliases/química , Hidroliases/ultraestrutura , Modelos Moleculares , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestrutura
17.
Nat Commun ; 8(1): 1746, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-29170493

RESUMO

Inorganic phosphate is the major bioavailable form of the essential nutrient phosphorus. However, the concentration of phosphate in most natural habitats is low enough to limit microbial growth. Under phosphate-depleted conditions some bacteria utilise phosphite and hypophosphite as alternative sources of phosphorus, but the molecular basis of reduced phosphorus acquisition from the environment is not fully understood. Here, we present crystal structures and ligand binding affinities of periplasmic binding proteins from bacterial phosphite and hypophosphite ATP-binding cassette transporters. We reveal that phosphite and hypophosphite specificity results from a combination of steric selection and the presence of a P-H…π interaction between the ligand and a conserved aromatic residue in the ligand-binding pocket. The characterisation of high affinity and specific transporters has implications for the marine phosphorus redox cycle, and might aid the use of phosphite as an alternative phosphorus source in biotechnological, industrial and agricultural applications.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Ácidos Fosfínicos/metabolismo , Fosfitos/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sítios de Ligação , Cristalografia por Raios X , Cinética , Ligantes , Modelos Moleculares , Filogenia , Prochlorococcus/genética , Prochlorococcus/metabolismo , Pseudomonas stutzeri/genética , Pseudomonas stutzeri/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Trichodesmium/genética , Trichodesmium/metabolismo
18.
Biochem J ; 474(5): 667-681, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28008132

RESUMO

Chlorophylls (Chls) are modified tetrapyrrole molecules, essential for photosynthesis. These pigments possess an isocyclic E ring formed by the Mg-protoporphyrin IX monomethylester cyclase (MgPME-cyclase). We assessed the in vivo effects of altering seven highly conserved residues within Ycf54, which is required for MgPME-cyclase activity in the cyanobacterium SynechocystisSynechocystis strains harbouring the Ycf54 alterations D39A, F40A and R82A were blocked to varying degrees at the MgPME-cyclase step, whereas the A9G mutation reduced Ycf54 levels by ∼75%. Wild-type (WT) levels of the cyclase subunit CycI are present in strains with D39A and F40A, but these strains have lowered cellular Chl and photosystem accumulation. CycI is reduced by ∼50% in A9G and R82A, but A9G has no perturbations in Chl or photosystem accumulation, whilst R82A contains very little Chl and few photosystems. When FLAG tagged and used as bait in pulldown experiments, the three mutants D39A, F40A and R82A were unable to interact with the MgPME-cyclase component CycI, whereas A9G pulled down a similar level of CycI as WT Ycf54. These observations suggest that a stable interaction between CycI and Ycf54 is required for unimpeded Pchlide biosynthesis. Crystal structures of the WT, A9G and R82A Ycf54 proteins were solved and analysed to investigate the structural effects of these mutations. A loss of the local hydrogen bonding network and a reversal in the surface charge surrounding residue R82 are probably responsible for the functional differences observed in the R82A mutation. We conclude that the Ycf54 protein must form a stable interaction with CycI to promote optimal Pchlide biosynthesis.


Assuntos
Proteínas de Bactérias/química , Oxigenases/química , Subunidades Proteicas/química , Protoclorifilida/biossíntese , Proteínas Recombinantes/química , Synechocystis/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Ciclização , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Ligação de Hidrogênio , Mutagênese Sítio-Dirigida , Oxigenases/genética , Oxigenases/metabolismo , Fotossíntese/genética , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Secundária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Protoclorifilida/química , Protoporfirinas/química , Protoporfirinas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Synechocystis/enzimologia
19.
Sci Rep ; 6: 38879, 2016 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-27934966

RESUMO

Most organisms are exposed to the genotoxic chemical formaldehyde, either from endogenous or environmental sources. Therefore, biology has evolved systems to perceive and detoxify formaldehyde. The frmRA(B) operon that is present in many bacteria represents one such system. The FrmR protein is a transcriptional repressor that is specifically inactivated in the presence of formaldehyde, permitting expression of the formaldehyde detoxification machinery (FrmA and FrmB, when the latter is present). The X-ray structure of the formaldehyde-treated Escherichia coli FrmR (EcFrmR) protein reveals the formation of methylene bridges that link adjacent Pro2 and Cys35 residues in the EcFrmR tetramer. Methylene bridge formation has profound effects on the pattern of surface charge of EcFrmR and combined with biochemical/biophysical data suggests a mechanistic model for formaldehyde-sensing and derepression of frmRA(B) expression in numerous bacterial species.


Assuntos
Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/fisiologia , Formaldeído/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas Repressoras/fisiologia , Sequência de Aminoácidos , Sequência de Bases , Cristalografia por Raios X , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Formaldeído/farmacologia , Inativação Metabólica , Interferometria , Modelos Moleculares , Óperon , Regiões Promotoras Genéticas/genética , Conformação Proteica , Proteínas Repressoras/química , Proteínas Repressoras/genética , Selenometionina/química , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transcrição Gênica
20.
Angew Chem Int Ed Engl ; 55(43): 13485-13489, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27717128

RESUMO

Programs of drug discovery generally exploit one enantiomer of a chiral compound for lead development following the principle that enantiomer recognition is central to biological specificity. However, chiral promiscuity has been identified for a number of enzyme families, which have shown that mirror-image packing can enable opposite enantiomers to be accommodated in an enzyme's active site. Reported here is a series of crystallographic studies of complexes between an enzyme and a potent experimental herbicide whose chiral center forms an essential part of the inhibitor pharmacophore. Initial studies with a racemate at 1.85 Šresolution failed to identify the chirality of the bound inhibitor, however, by extending the resolution to 1.1 Šand by analyzing high-resolution complexes with the enantiopure compounds, we determined that both enantiomers make equivalent pseudosymmetric interactions in the active site, thus mimicking an achiral reaction intermediate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA